Effects of rare-earth (Nd, Er and Y) doping on catalytic performance of HZSM-5 zeolite catalysts for methyl mercaptan (CH3SH) decomposition

2017 ◽  
Vol 533 ◽  
pp. 66-74 ◽  
Author(s):  
Dedong He ◽  
Husheng Hao ◽  
Dingkai Chen ◽  
Jiangping Liu ◽  
Jie Yu ◽  
...  
2011 ◽  
Vol 172 (1) ◽  
pp. 111-117 ◽  
Author(s):  
Gina Pecchi ◽  
Claudia Campos ◽  
Octavio Peña

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaoliang Liu ◽  
Jing Shi ◽  
Guang Yang ◽  
Jian Zhou ◽  
Chuanming Wang ◽  
...  

AbstractZeolite morphology is crucial in determining their catalytic activity, selectivity and stability, but quantitative descriptors of such a morphology effect are challenging to define. Here we introduce a descriptor that accounts for the morphology effect in the catalytic performances of H-ZSM-5 zeolite for C4 olefin catalytic cracking. A series of H-ZSM-5 zeolites with similar sheet-like morphology but different c-axis lengths were synthesized. We found that the catalytic activity and stability is improved in samples with longer c-axis. Combining time-resolved in-situ FT-IR spectroscopy with molecular dynamics simulations, we show that the difference in catalytic performance can be attributed to the anisotropy of the intracrystalline diffusive propensity of the olefins in different channels. Our descriptor offers mechanistic insight for the design of highly effective zeolite catalysts for olefin cracking.


2020 ◽  
Vol 592 ◽  
pp. 117415 ◽  
Author(s):  
Atsushi Okemoto ◽  
Makoto R. Harada ◽  
Takayuki Ishizaka ◽  
Norihito Hiyoshi ◽  
Koichi Sato

Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1392
Author(s):  
Asami Matsuda ◽  
Yoshitaka Matsumura ◽  
Kazuki Nakazono ◽  
Fumiya Sato ◽  
Ryoji Takahashi ◽  
...  

The aim of this work is to develop an effective catalyst for the conversion of butanediols, which is derivable from biomass, to valuable chemicals such as unsaturated alcohols. The dehydration of 1,4-, 1,3-, and 2,3-butanediol to form unsaturated alcohols such as 3-buten-1-ol, 2-buten-1-ol, and 3-buten-2-ol was studied in a vapor-phase flow reactor over sixteen rare earth zirconate catalysts at 325 °C. Rare earth zirconates with high crystallinity and high specific surface area were prepared in a hydrothermal treatment of co-precipitated hydroxide. Zirconates with heavy rare earth metals, especially Y2Zr2O7 with an oxygen-defected fluorite structure, showed high catalytic performance of selective dehydration of 1,4-butanediol to 3-buten-1-ol and also of 1,3-butanediol to form 3-buten-2-ol and 2-buten-1-ol, while the zirconate catalysts were less active in the dehydration of 2,3-butanediol. The calcination of Y2Zr2O7 significantly affected the catalytic activity of the dehydration of 1,4-butanediol: a calcination temperature of Y2Zr2O7 at 900 °C or higher was efficient for selective formation of unsaturated alcohols. Y2Zr2O7 with high crystallinity exhibits the highest productivity of 3-buten-1-ol from 1,4-butanediol at 325 °C.


Sign in / Sign up

Export Citation Format

Share Document