degradation process
Recently Published Documents





Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 319
Johnson H. Y. Chung ◽  
Sepidar Sayyar ◽  
Gordon G. Wallace

Melt-electrowriting (MEW) is an emerging method that combines electrospinning and extrusion printing, allowing the fabrication of micron-scale structures suitable for tissue engineering. Compared to other additive fabrication methods, melt-electro written structures can offer more appropriate substrates for cell culture due to filament size and mechanical characteristics of the fabricated scaffolds. In this study, polycaprolactone (PCL)/graphene composites were investigated for fabrication of micron-size scaffolds through MEW. It was demonstrated that the addition of graphene can considerably improve the processability of PCL to fabricate micron-scale scaffolds with enhanced resolution. The tensile strength of the scaffold prepared from PCL/graphene composite (with only 0.5 wt.% graphene) was proved significantly (by more than 270%), better than that of the pristine PCL scaffold. Furthermore, graphene was demonstrated to be a suitable material for tailoring the degradation process to avoid undesirable bulk degradation, rapid mass loss and damage to the internal matrix of the polymer. The findings of this study offer a promising route for the fabrication of high-resolution scaffolds with micron-scale resolution for tissue engineering.

2022 ◽  
Vol 13 (1) ◽  
Monirul Hasan ◽  
Siddhartha Saggar ◽  
Atul Shukla ◽  
Fatima Bencheikh ◽  
Jan Sobus ◽  

AbstractPolaron-induced exciton quenching in thermally activated delayed fluorescence (TADF)-based organic light-emitting diodes (OLEDs) can lead to external quantum efficiency (EQE) roll-off and device degradation. In this study, singlet-polaron annihilation (SPA) and triplet-polaron annihilation (TPA) were investigated under steady-state conditions and their relative contributions to EQE roll-off were quantified, using experimentally obtained parameters. It is observed that both TPA and SPA can lead to efficiency roll-off in 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) doped OLEDs. Charge imbalance and singlet-triplet annihilation (STA) were found to be the main contributing factors, whereas the device degradation process is mainly dominated by TPA. It is also shown that the impact of electric field-induced exciton dissociation is negligible under the DC operation regime (electric field < 0.5 MV cm−1). Through theoretical simulation, it is demonstrated that improvement to the charge recombination rate may reduce the effect of polaron-induced quenching, and thus significantly decrease the EQE roll-off.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 474
Yufan Yan ◽  
Xianjia Meng ◽  
Chuanyong Qu

The fatigue damage behavior of bone has attracted significant attention in both the mechanical and orthopedic fields. However, due to the complex and hierarchical structure of bone, describing the damage process quantitively or qualitatively is still a significant challenge for researchers in this area. In this study, a nonlinear bi-modulus gradient model was proposed to quantify the neutral axis skewing under fatigue load in a four-point bending test. The digital image correlation technique was used to analyze the tensile and compressive strains during the fatigue process. The results showed that the compressive strain demonstrated an obvious two-stage ascending behavior, whereas the tensile strain revealed a slow upward progression during the fatigue process. Subsequently, a theoretical model was proposed to describe the degradation process of the elastic modulus and the movement of the neutral axis. The changes in the bone properties were determined using the FEM method based on the newly developed model. The results obtained from two different methods exhibited a good degree of consistency. The results obtained in this study are of help in terms of effectively exploring the damage evolution of the bone materials.

Nicola Esposito ◽  
Agostino Mele ◽  
Bruno Castanier ◽  
Massimiliano Giorgio

In this paper, a new gamma-based degradation process with random effect is proposed that allows to account for the presence of measurement error that depends in stochastic sense on the measured degradation level. This new model extends a perturbed gamma model recently suggested in the literature, by allowing for the presence of a unit to unit variability. As the original one, the extended model is not mathematically tractable. The main features of the proposed model are illustrated. Maximum likelihood estimation of its parameters from perturbed degradation measurements is addressed. The likelihood function is formulated. Hence, a new maximization procedure that combines a particle filter and an expectation-maximization algorithm is suggested that allows to overcome the numerical issues posed by its direct maximization. Moreover, a simple algorithm based on the same particle filter method is also described that allows to compute the cumulative distribution function of the remaining useful life and the conditional probability density function of the hidden degradation level, given the past noisy measurements. Finally, two numerical applications are developed where the model parameters are estimated from two sets of perturbed degradation measurements of carbon-film resistors and fuel cell membranes. In the first example the presence of random effect is statistically significant while in the second example it is not significant. In the applications, the presence of random effect is checked via appropriate statistical procedures. In both the examples, the influence of accounting for the presence of random effect on the estimates of the cumulative distribution function of the remaining useful life of the considered units is also discussed. Obtained results demonstrate the affordability of the proposed approach and the usefulness of the proposed model.

Aurélie Van Wylick ◽  
Elise Elsacker ◽  
Li Li Yap ◽  
Eveline Peeters ◽  
Lars de Laet

In the search for environmentally friendly materials, mycelium composites have been labelled as high potential bio-based alternatives to fossil-based and synthetic materials in various fields. Mycelium-based materials are praised for their biodegradability, however no scientific research nor standard protocols exist to substantiate this claim. This research therefore aims to develop an appropriate experimental methodology as well as to deliver a novel proof of concept of the material’s biodegradability. The applied methodology was adapted from a soil burial test under predefined laboratory conditions and hands-on preliminary experiments. The mycelium composite samples were placed in a nylon netting and then buried in potting soil with a grain size of 2 mm for different time-intervals ranging between one and sixteen weeks. Results showed that mycelium, which acted as the binder, had the tendency to decompose first. A weight loss of 43% was witnessed for inert samples made of the fungal strain Ganoderma resinaceum and hemp fibres after sixteen weeks. The disintegration rate in this method however depended on various parameters which were related to the material’s composition, its production method and the degradation process which involved the used equipment, materials and environmental properties.

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 190
Ali Hassan ◽  
Muhammad Azam ◽  
Yeong Hwan Ahn ◽  
Muhammad Zubair ◽  
Yu Cao ◽  

Organic–inorganic hybrid perovskite photodetectors are gaining much interest recently for their high performance in photodetection, due to excellent light absorption, low cost, and ease of fabrication. Lower defect density and large grain size are always favorable for efficient and stable devices. Herein, we applied the interface engineering technique for hybrid trilayer (TiO2/graphene oxide/perovskite) photodetector to attain better crystallinity and defect passivation. The graphene oxide (GO) sandwich layer has been introduced in the perovskite photodetector for improved crystallization, better charge extraction, low dark current, and enhanced carrier lifetime. Moreover, the trilayer photodetector exhibits improved device performance with a high on/off ratio of 1.3 × 104, high responsivity of 3.38 AW−1, and low dark current of 1.55 × 10−11 A. The insertion of the GO layer also suppressed the perovskite degradation process and consequently improved the device stability. The current study focuses on the significance of interface engineering to boost device performance by improving interfacial defect passivation and better carrier transport.

2022 ◽  
Vol 12 (1) ◽  
pp. 76
Muhammad Tanveer ◽  
Gokce Tezcanli ◽  
Muhammad Tahseen Sadiq ◽  
Syeda Memoona Kazmi ◽  
Nawal Noshad ◽  

Diclofenac sodium (DCF) is a non-steroidal anti-inflammatory drug mainly used as an analgesic, arthritic and anti-rheumatic. This study deals with the degradation of diclofenac by photo catalytic-based advanced oxidation processes. Artificial UV lamp and solar rays have been applied to activate the ZnO catalyst, thereby generating highly oxidizing species. These species initiate the degradation process of the drug, which results in intermediates that finally dissociate into carbon dioxide and water. The solar reactor system is comprised of quartz and borosilicate tubes alternatively for the absorption and transmission of the solar rays to the pollutant sample. The degradation rate has been analyzed by composition analysis using high performance liquid chromatography. TOC and COD tests have also been conducted for degraded samples. ZnO catalyst loading was tested from 0.1 gm/L to 1 gm/L and the degradation rate showed a rising trend up to 0.250 gm/L, but further increase in loading resulted in a drop in degradation. Similarly, degradation is higher in acidic condition as compared to neutral or basic pH. The results showed a higher degradation rate for UV lamp irradiation as compared to the solar system. Moreover, TOC and COD reduction is also found to be higher for UV lamp photo catalysis.

2022 ◽  
Fengna Liang ◽  
Xiao Huang ◽  
Huixin Zheng ◽  
Xiangqing Ma ◽  
Yonglai Huang ◽  

Abstract Purpose: Soil bacteria comprise the largest number of soil microorganisms and play an important role in moso bamboo (Phyllostachys edulis) stump decay; however, the characteristics of soil bacterial communities inside and outside these stumps remain unclear. Methods: The characteristics of soil bacterial communities inside and outside Phyllostachys edulis bamboo stumps were analyzed under three different levels of decay using high-throughput sequencing technology. Results: The abundance of operational taxonomic units inside and outside the bamboo stumps increased as the decay progressed; Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, and Verrucomicrobia were the most abundant phyla in the soil inside and outside the bamboo stumps. In the outside bamboo stumps, there was a very significant positive correlation of Acidobacteria and Planctomycetes with the decaying degree of bamboo stumps. At the class level, Alphaproteobacteria, Gammaproteobacteria, and Planctomycetacia were the most abundant bacteria in the bamboo stumps. Inside the stumps, the decaying degree of bamboo stumps was significantly positively correlated with Alphaproteobacteria and significantly negatively correlated with Gammaproteobacteria and Bacilli. Principal component analysis and the heat map analysis at the genus level indicated similarities among soil bacterial communities inside the moderately and severely decayed bamboo stumps and among the communities outside the mildly and moderately decayed bamboo stumps. Conclusion: Our results augment our understanding of the expeditious degradation process of bamboo stumps, and provide a theoretical basis and reference for microbiological research, sustainable bamboo stump operations, and degradation methods of bamboo forests.

Sign in / Sign up

Export Citation Format

Share Document