scholarly journals A diffusion anisotropy descriptor links morphology effects of H-ZSM-5 zeolites to their catalytic cracking performance

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaoliang Liu ◽  
Jing Shi ◽  
Guang Yang ◽  
Jian Zhou ◽  
Chuanming Wang ◽  
...  

AbstractZeolite morphology is crucial in determining their catalytic activity, selectivity and stability, but quantitative descriptors of such a morphology effect are challenging to define. Here we introduce a descriptor that accounts for the morphology effect in the catalytic performances of H-ZSM-5 zeolite for C4 olefin catalytic cracking. A series of H-ZSM-5 zeolites with similar sheet-like morphology but different c-axis lengths were synthesized. We found that the catalytic activity and stability is improved in samples with longer c-axis. Combining time-resolved in-situ FT-IR spectroscopy with molecular dynamics simulations, we show that the difference in catalytic performance can be attributed to the anisotropy of the intracrystalline diffusive propensity of the olefins in different channels. Our descriptor offers mechanistic insight for the design of highly effective zeolite catalysts for olefin cracking.

2021 ◽  
Author(s):  
Xiaoliang Liu ◽  
Jing Shi ◽  
Guang Yang ◽  
Jian Zhou ◽  
Chuanming Wang ◽  
...  

Abstract Zeolite morphology is vital in determining catalytic activity, selectivity and stability in zeolite catalysis, while quantitative description of morphology effect is great challenging but highly desirable. Herein, a descriptor to elucidate the morphology effect is proposed by revealing the diffusion anisotropy in straight and sinusoidal channels of H-ZSM-5 zeolite for olefin catalytic cracking. A series of H-ZSM-5 zeolites with similar nano-sheet morphology were precisely synthesized in which only the length in c-axis varies. It is unexpectedly demonstrated that the catalytic activity and stability can be obviously improved by employing samples with longer length in c-axis. Combining time-resolved in-situ FT-IR spectroscopy with molecular dynamic simulations, we revealed that the difference in catalytic performance can be attributed to the intracrystalline diffusive propensity in different channels. This work not only provides a clear descriptor revealing morphology effect, but also offers deep insight into design of highly effective zeolite catalysts for olefin catalytic cracking.


2021 ◽  
Vol 1016 ◽  
pp. 1417-1422
Author(s):  
Chao Sun ◽  
Jugoslav Krstic ◽  
Vojkan Radonjic ◽  
Miroslav Stankovic ◽  
Patrick da Costa

This study is aimed to investigate the effect of Ni precursor salts on the properties (textural, phase-structural, reducibility, and basicity), and catalytic performance of diatomite supported Ni-Mg catalyst in methanation of CO2. The NiMg/D-X catalysts derived from various nickel salts (X = S-sulfamate, N-nitrate or A-acetate) were synthesized by the precipitation-deposition (PD) method. The catalysts were characterized by N2-physisorption, XRD, TPR-H2, and TPD-CO2 techniques. The different catalytic activity (conversion) and selectivity, observed in CO2 methanation carried out under relatively mild conditions (atmospheric pressure; temperatures: 250-450 °C) are related and explained by the difference in textural properties, metallic Ni-crystallite size, reducibility, and basicity of studied catalysts. The results showed that catalyst derived from Ni-nitrate salt (NiMg/D-N) is more suitable for the preparation of efficient catalyst for CO2 methanation than its counterparts derived from sulfamate (NiMg/D-S) or acetate (NiMg/D-A) nickel salt. The NiMg/D-N catalyst showed the highest specific surface area and total basicity, and the best catalytic performance with CO2 conversion of 63.3 % and CH4 selectivity of 80.9 % at 450 °C.


Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 155 ◽  
Author(s):  
Zhenheng Diao ◽  
Lushi Cheng ◽  
Xu Hou ◽  
Di Rong ◽  
Yanli Lu ◽  
...  

Hierarchical HZSM-5 membranes were prepared on the inner wall of stainless steel tubes, using amphiphilic organosilane (TPOAC) and mesitylene (TMB) as a meso-porogen and a swelling agent, respectively. The mesoporosity of the HZSM-5 membranes were tailored via formulating the TPOAC/Tetraethylorthosilicate (TPOAC/TEOS) ratio and TMB/TPOAC ratio, in synthesis gel, and the prepared membranes were systematically characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), N2 adsorption–desorption, N2 permeation, inductively coupled plasma (ICP), in situ fourier transform infrared (FT-IR), ammonia temperature-programmed desorption (NH3-TPD), etc. It was found that the increase of the TPOAC/TEOS ratio promoted a specific surface area and diffusivity of the HZSM-5 membranes, as well as decreased acidity; the increase of the TMB/TPOAC ratios led to an enlargement of the mesopore size and diffusivity of the membranes, but with constant acid properties. The catalytic performance of the prepared HZSM-5 membranes was tested using the catalytic cracking of supercritical n-dodecane (500 °C, 4 MPa) as a model reaction. The hierarchical membrane with the TPOAC/TEOS ratio of 0.1 and TMB/TPOAC ratio of 2, exhibited superior catalytic performances with the highest activity of up to 13% improvement and the lowest deactivation rate (nearly a half), compared with the microporous HZSM-5 membrane, due to the benefits of suitable acidity, together with enhanced diffusivity of n-dodecane and cracking products.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Pranjal Saikia ◽  
Abu Taleb Miah ◽  
Banajit Malakar ◽  
Ankur Bordoloi

Noble metal nanomaterials have attracted mounting research attention for applications in diverse fields of catalysis, biology, and nanotechnology. In the present study, we have undertaken a detailed investigation on synthesis, characterization, and catalytic activity studies for CO oxidation by nanogold catalysts supported over CeO2 and CeO2-ZrO2 (1 : 1 mole ratio). The support systems were prepared by modified, simple precipitation technique and the Au supported samples were synthesized using deposition-precipitation with urea method. The physicochemical characterization was performed by XRD, ICP-AES, BET surface area, FT-IR, UV-Vis DRS, Raman Spectroscopy, TEM, and XPS techniques. Au/CeO2 catalyst showed more than 80% CO conversions at 30°C, whereas Au/CeO2-ZrO2 exhibited ~100% CO conversion at that temperature. The catalytic performance of Au catalysts is highly dependent on the nature of the support.


2011 ◽  
Vol 233-235 ◽  
pp. 234-237 ◽  
Author(s):  
Sa Liu ◽  
Jian Wei Guo ◽  
Chu Fen Yang ◽  
Long Huan Li ◽  
Yi Hua Cui

Al-containing mesoporous molecular sieves(Al-MCM-41) were synthesized at ambient temperature. The structures of samples were characterized by XRD, N2-adsorption/desorption isotherms and FT-IR, etc. The evaluation results showed that Al-MCM-41 had higher catalytic activity for isomerization conversion of endo-tetrahydrodicyclo-pentadiene (endo-TCD) into exo-tetrahydrodicyclo-pentadiene (exo-TCD) and adamantane (AdH). Loading inorganic acid on the surface of Al-MCM-41 led increase of its catalytic activity and the yield of adamantane.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 211
Author(s):  
Yongxin Zhang ◽  
Long Lin ◽  
Xiaoming Zheng ◽  
Chunyan Liu ◽  
Quanren Zhu ◽  
...  

In this study, a series of SnO2 modified zeolite catalysts (Snx-S-1; x is the weight percentage of Sn) were prepared with SnCl2 and a defective Silicalite-1 (S-1) zeolite via facile deposition–precipitation method. It was found that the stannic species modified all-silica zeolite catalysts were active for the intermolecular condensation of ethylenediamine (EDA) to 1, 2-Diazabicyclo [2, 2, 2] octane (TEDA) and piperazine (PIP). The best catalyst Sn6-S-1 (6 wt.% Sn loading) showed 86% EDA conversion and 93% total selectivity to TEDA and PIP. By contrast, the defective S-1 zeolite parent showed only approximately 9% EDA conversion under the same conditions. With the help of catalyst characterization techniques including hydroxyl vibration and pyridine adsorption FT-IR spectroscopy (transmission mode), the enhancement of the catalytic activity of the SnO2 modified zeolite catalysts (Snx-S-1) was mainly attributed to the formation of mild Lewis acid sites in the siliceous zeolite. Both the hydroxyl nests of the defective S-1 zeolite and the dispersed SnO2 clusters should be the important factors for the formation of mild Lewis acid sites on the modified zeolite. Based on the catalytic performance of the modified zeolite in the conversion of EDA to PIP and TEDA, it is inferred that the mildly acidified defective S-1 zeolite by the SnO2 deposition modification might become a very active and durable catalyst for reactions involving strongly alkaline reactants and products.


2021 ◽  
Vol 21 (7) ◽  
pp. 4060-4066
Author(s):  
Sang-Chul Jung ◽  
Young-Kwon Park ◽  
Ho-Young Jung ◽  
Sang Chai Kim

The complete oxidation of toluene (as a model volatile organic compound) was studied to determine the influence of adding a transition metal (Mn, Cr, Fe, Co, and Ni) to the 5 Cu/Al catalyst. The physcochemical properties of the catalysts were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, X-ray diffraction (XRD) analysis, field emission transmission electron microscopy (FE/TEM), and hydrogen temperature programmed reduction (H2-TPR). The catalytic activity of the supported bimetallic catalysts followed the order: 5Cu-5Mn/Al > 5Cu-5Cr/Al > 5Cu-5Fe/Al > 5Cu-5Co/Al > 5Cu > 5Cu-5Ni/Al, based on the temperature for T90 of toluene conversion (T90). Two different reaction mechanisms (mixing and the synergistic effect) were operative in the supported bimetallic catalysts except for the 5Cu–5Mn/Al and 5Cu–5Ni/Al catalysts, on the basis of the reaction temperature. The difference between the electronegativity of copper and the added transition metal was associated with the catalytic activity.


2013 ◽  
Vol 477-478 ◽  
pp. 1457-1463 ◽  
Author(s):  
Da Ming Huang ◽  
Wei Wei Jiang ◽  
Lin Lin ◽  
Saritporn Vittayapadung ◽  
Zhi Hong Xiao ◽  
...  

In our Research, we Used Cornus Wisoniana oil as Feedstock and the High Temperature Pyrolysis Kettle as the Reactor. Examine the Performance of Lanthanum Oxide, Zirconium Sulfate, Calcium Oxide and KF Loaded Catalyst on Cornus Wisoniana oil Catalytic Cracking Reaction. and through the SEM, XRD and FT-IR, Optimal Catalysts were Used to Characterize the Structure. the Results Showed that among KF Modified Catalyst KF Supported on Cao Produced Highest Yield of Bio-Fuel Oil from Cornus Wisoniana oil. when the Dosage of Catalyst Reached 1%, KF Impregnation Ratio of 40%, and Catalyst Calcination for 4h at 600°C, it can be Obtained Highest Yield of Bio-Fuel Oil about 82.7% and Reaction Rate up to 94.1. in Addition to the KF/MgO Having Low Yield about 60.6%, Catalytic Activity of other Four KF Catalysts were Higher than that of Lanthanum Oxide, Zirconium Sulfate and Calcium Oxide. the Catalytic Efficiency of Lanthanum Oxide and Zirconium Sulfate Appeared Similarity and are all Low. the Catalytic Activity of Calcium Oxide is Slightly Higher than the Lanthanum Oxide and Zirconium Sulfate, but Lower than that of KF/CaO Catalyst.


2020 ◽  
Vol 42 (4) ◽  
pp. 504-504
Author(s):  
Mo Thi Nguyen Mo Thi Nguyen ◽  
Cam Minh Le Cam Minh Le ◽  
Tuan Minh Nguyen Tuan Minh Nguyen ◽  
Hao Hoang Nguyen Hao Hoang Nguyen ◽  
Anwar ul Haq Ali Shah Hung Van Hoang Anwar ul Haq Ali Shah Hung Van Hoang

Catalytic oxidation of organic volatile compounds (VOCs) is considered superior to conventional methods because very low concentration of VOCs can also be oxidized and removed at low temperatures without consumption of addditional fuel and introduction of NOx compounds into the environment. Herein, the synthesis of MnO2 nanoparticles on bentonite (Bent) support in the presence of CuO for catalytic oxidation of m-xylene is reported. The synthesized materials were analyzed with FT-IR, XRD, and TEM analysis for structural and morphological characterization. XRD and TEM analysis indicated the formation of δ-MnO2 with sheet structure on Bent surface. Temperature-programmed reduction (H2-TPR) of hydrogen was used to investigate catalytic performance of δ-MnO2 towards oxidation of m-xylene at different temperatures. The catalytic activity was strongly dependent on the δ-MnO2 content in the synthesized material. 100 % oxidation of m-xylene with observed with 10% Mn content at temperature below than 325 oC. Intersetingly introduction of CuO greatly improved the catalytic activity of Mn-Bent materials. The presence of Cu in Mn-Bent has greatly reduced the temperature for complete oxidation of m-xylene. In this case100% conversion of m-xylene was observed at 250 oC.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3764 ◽  
Author(s):  
Cordioli ◽  
Patuzzi ◽  
Baratieri

Tar formation hinders the development of biomass gasification technologies. The use of pyrolytic char as a catalyst for removing tar has been widely investigated; its large specific surface area and pores distribution make it a good candidate for the cracking of heavy hydrocarbons. The present work assesses the catalytic activity of char from a commercial gasifier. Thermal degradation tests in N2 and in CO2 proved that the char is suitable for high-temperature applications (catalytic cracking) and showed release of CO and H2, which might affect the catalytic performance of the char when used for tar removal applications. For inspecting the potential of the char for tar removal, toluene was chosen as model tar. Through GC-FID, toluene removal efficiency and the amount of benzene produced from its decomposition were evaluated. Tests up to 1273 K resulted in tar removal efficiencies as high as 99.0%, and empty reactor tests allowed for discerning the effects of thermal and catalytic cracking. The catalytic activity of the char was more pronounced at 1173 K, as char increased the toluene removal efficiency from 39.9% (empty reactor) to 60.3%. The results confirmed that gasification char, like pyrolytic char, has a high potential for catalytic tar removal applications.


Sign in / Sign up

Export Citation Format

Share Document