Self-condensation of levulinic acid into bio-jet fuel precursors over acid zeolites: elucidating the role of nature, strength and density of acid sites

2022 ◽  
pp. 118480
Author(s):  
Pablo Juárez ◽  
Clara López-Aguado ◽  
Marta Paniagua ◽  
Juan A. Melero ◽  
Rafael Mariscal ◽  
...  
2015 ◽  
Vol 505 ◽  
pp. 217-223 ◽  
Author(s):  
Velisoju Vijay Kumar ◽  
Gutta Naresh ◽  
Medak Sudhakar ◽  
James Tardio ◽  
Suresh K. Bhargava ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2015
Author(s):  
Łukasz Kuterasiński ◽  
Małgorzata Smoliło-Utrata ◽  
Joanna Kaim ◽  
Wojciech Rojek ◽  
Jerzy Podobiński ◽  
...  

The aim of the present paper is to study the speciation and the role of different active site types (copper species and Brønsted acid sites) in the direct synthesis of furan from furfural catalyzed by copper-exchanged FAU31 zeolite. Four series of samples were prepared by using different conditions of post-synthesis treatment, which exhibit none, one or two types of active sites. The catalysts were characterized by XRD, low-temperature sorption of nitrogen, SEM, H2-TPR, NMR and by means of IR spectroscopy with ammonia and CO sorption as probe molecules to assess the types of active sites. All catalyst underwent catalytic tests. The performed experiments allowed to propose the relation between the kind of active centers (Cu or Brønsted acid sites) and the type of detected products (2-metylfuran and furan) obtained in the studied reaction. It was found that the production of 2-methylfuran (in trace amounts) is determined by the presence of the redox-type centers, while the protonic acid sites are mainly responsible for the furan production and catalytic activity in the whole temperature range. All studied catalysts revealed very high susceptibility to coking due to polymerization of furfural.


2021 ◽  
Vol 61 ◽  
pp. 446-458
Author(s):  
Ziyi Li ◽  
Haigang Hao ◽  
Jingjing Lu ◽  
Chengming Wu ◽  
Rui Gao ◽  
...  
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2669
Author(s):  
Łukasz Kuterasiński ◽  
Jerzy Podobiński ◽  
Jerzy Datka

In this study, IR studies of the coadsorption of ethanol and CO on Cu+ cations evidenced the transfer of electrons from ethanol to Cu+, which caused the lowering of the frequency of the band attributed to CO bonded to the same Cu+ cation due to the more effective π back donation of d electrons of Cu to antibonding π* orbitals of CO. The reaction of ethanol with acid sites in zeolite HFAU above 370 K produced water and ethane, polymerizing to polyethylene. Ethanol adsorbed on zeolite Cu(2)HFAU containing acid sites and Cu+exch also produced ethene, but in this case, the ethene was bonded to Cu+ and did not polymerize. C=C stretching, which is IR non-active in the free ethene molecule, became IR active, and a weak IR band at 1538 cm−1 was present. The reaction of ethanol above 370 K in Cu(5)NaFAU zeolite (containing small amounts of Cu+exch and bigger amounts of Cu+ox, Cu2+exch and CuO) produced acetaldehyde, which was further oxidized to the acetate species (CH3COO-). As oxygen was not supplied, the donors of oxygen were the Cu species present in our zeolite. The CO and NO adsorption experiments performed in Cu-zeolite before and after ethanol reaction evidenced that both Cu+ox and Cu2+ (Cu2+exch and CuO) were consumed by the ethanol oxidation reaction. The studies of the considered reaction of bulk CuO and Cu2O as well as zeolites, in which the contribution of Cu+ox species was reduced by various treatments, suggest that ethanol was oxidized to acetaldehyde by Cu2+ox (the role of Cu+ox could not be elucidated), but Cu+ox was the oxygen donor in the acetate formation.


2011 ◽  
Vol 37 (2) ◽  
pp. 175-180
Author(s):  
Takashi Sasaki ◽  
Shuichi Kanno
Keyword(s):  

2017 ◽  
Vol 60 (19-20) ◽  
pp. 1554-1564 ◽  
Author(s):  
Vicente Sanchez Escribano ◽  
Gabriella Garbarino ◽  
Elisabetta Finocchio ◽  
Guido Busca

Sign in / Sign up

Export Citation Format

Share Document