Defect Engineering Technique for the Fabrication of LaCoO3 Perovskite Catalyst via Urea Treatment for Total Oxidation of Propane

Author(s):  
Chao Feng ◽  
Qianqian Gao ◽  
Gaoyan Xiong ◽  
Yanfei Chen ◽  
Yuan Pan ◽  
...  
2006 ◽  
Vol 3 (6) ◽  
pp. 1787-1791
Author(s):  
M. Jamil ◽  
Eric Irissou ◽  
J. R. Grandusky ◽  
V. Jindal ◽  
F. Shahedipour-Sandvik

2020 ◽  
Author(s):  
Adam Sapnik ◽  
Duncan Johnstone ◽  
Sean M. Collins ◽  
Giorgio Divitini ◽  
Alice Bumstead ◽  
...  

<p>Defect engineering is a powerful tool that can be used to tailor the properties of metal–organic frameworks (MOFs). Here, we incorporate defects through ball milling to systematically vary the porosity of the giant pore MOF, MIL-100 (Fe). We show that milling leads to the breaking of metal–linker bonds, generating more coordinatively unsaturated metal sites, and ultimately causes amorphisation. Pair distribution function analysis shows the hierarchical local structure is partially</p><p>retained, even in the amorphised material. We find that the solvent toluene stabilises the MIL-100 (Fe) framework against collapse and leads to a substantial rentention of porosity over the non-stabilised material.</p>


2020 ◽  
Vol 13 (12) ◽  
pp. 120101
Author(s):  
Tsunenobu Kimoto ◽  
Heiji Watanabe

2018 ◽  
Vol 140 (4) ◽  
pp. 1358-1364 ◽  
Author(s):  
Dae-Yong Son ◽  
Seul-Gi Kim ◽  
Ja-Young Seo ◽  
Seon-Hee Lee ◽  
Hyunjung Shin ◽  
...  

2021 ◽  
Vol 1057 (1) ◽  
pp. 012029
Author(s):  
E Jayakiran Reddy ◽  
N Bhanodaya Kiran Babu ◽  
A Bala Raju

Nanoscale ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3327-3345
Author(s):  
Xuecheng Yan ◽  
Linzhou Zhuang ◽  
Zhonghua Zhu ◽  
Xiangdong Yao

This review highlights recent advancements in defect engineering and characterization of both metal-free carbons and transition metal-based electrocatalysts.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 252
Author(s):  
Tadej Žumbar ◽  
Alenka Ristić ◽  
Goran Dražić ◽  
Hristina Lazarova ◽  
Janez Volavšek ◽  
...  

The structure–property relationship of catalytic supports for the deposition of redox-active transition metals is of great importance for improving the catalytic efficiency and reusability of the catalysts. In this work, the role of alumina support precursors of Cu-Fe/Al2O3 catalysts used for the total oxidation of toluene as a model volatile organic air pollutant is elucidated. Surface characterization of the catalysts revealed that the surface area, pore volume and acid site concentration of the alumina supports are important but not the determining factors for the catalytic activity of the studied catalysts for this type of reaction. The determining factors are the structural order of the support precursor, the homogeneous distribution of the catalytic sites and reducibility, which were elucidated by XRD, NMR, TEM and temperature programed reduction (TPR). Cu–Fe/Al2O3 prepared from bayerite and pseudoboehmite as highly ordered precursors showed better catalytic performance compared to Cu-Fe/Al2O3 derived from the amorphous alumina precursor and dawsonite. Homogeneous distribution of FexOy and CuOx with defined Cu/Fe molar ratio on the Al2O3 support is required for the efficient catalytic performance of the material. The study showed a beneficial effect of low iron concentration introduced into the alumina precursor during the alumina support synthesis procedure, which resulted in a homogeneous metal oxide distribution on the support.


Sign in / Sign up

Export Citation Format

Share Document