Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands

2013 ◽  
Vol 111 ◽  
pp. 428-440 ◽  
Author(s):  
Babatunde Olateju ◽  
Amit Kumar
Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5074
Author(s):  
Radosław Kaplan ◽  
Michał Kopacz

This study documents the results of economic assessment concerning four variants of coal gasification to hydrogen in a shell reactor. That assessment has been made using discounting methods (NPV: net present value, IRR: internal rate of return), as well as indicators based on a free cash flow to firm (FCFF) approach. Additionally, sensitivity analysis has been carried out, along with scenario analysis in current market conditions concerning prices of hard coal, lignite, hydrogen and CO2 allowances, as well as capital expenditures and costs related to carbon capture and storage (CCS) systems. Based on NPV results, a negative economic assessment has been obtained for all the analyzed variants varying within the range of EUR −903 to −142 million, although the variants based on hard coal achieved a positive IRR (5.1–5.7%) but lower than the assumed discount rates. In Polish conditions, the gasification of lignite seems to be unprofitable, in the assumed scale of total investment outlays and the current price of coal feedstock. The sensitivity analyses indicate that at least a 20% increase of hydrogen price would be required, or a similar reduction of capital expenditures (CAPEX) and costs of operation, for the best variant to make NPV positive. Analyses have also indicated that on the economic basis, only the prices of CO2 allowances exceeding EUR 40/Mg (EUR 52/Mg for lignite) would generate savings due to the availability of CCS systems.


Author(s):  
Michael Green

Underground coal gasification is a conversion and extraction process, for the production of useful synthetic product gas from an in-situ coal seam, to use in power generation, heat production or as a chemical feedstock. While many variants of the underground coal gasification process have been considered and over 75 trials performed throughout the world, the recent work has tended to focus on the control of the process, its environmental impact on underground and surface conditions and its potential for carbon capture and storage. Academic research has produced a set of mathematical models of underground coal gasification, and the European Union-supported programme has addressed the production of a decarbonised product gas for carbon capture and storage. In recent years, significant progress has been made into the modelling of tar formation, spalling, flows within the cavity and the control of minor gasification components, like BTEX and phenols, from underground coal gasification cavities (BTEX refers to the chemicals benzene, toluene, ethylbenzene and xylene). The paper reviews the most recent underground coal gasification field trial and modelling experience and refers to the pubic concern and caution by regulators that arise when a commercial or pilot-scale project seeks approval. It will propose solutions for the next generation of underground coal gasification projects. These include the need to access deeper coal seams and the use of new techniques for modelling the process.


2010 ◽  
Author(s):  
Cheryl Engels ◽  
Bryan, Valluri, Kiranmal Williams ◽  
Ramchandra Watwe ◽  
Ravi Kumar ◽  
Stewart Mehlman

1990 ◽  
Vol 106 (12) ◽  
pp. 731-736
Author(s):  
Yoshimi SEIDA ◽  
Noriyoshi TSUCHIYA ◽  
Heiji ENOMOTO ◽  
Tadashi CHIDA

2017 ◽  
Vol 23 (2) ◽  
pp. 269-277 ◽  
Author(s):  
Damjan Konovsek ◽  
Zdravko Praunseis ◽  
Jurij Avsec ◽  
Gorazd Bercic ◽  
Andrej Pohar ◽  
...  

Underground coal gasification (UCG) is a viable possibility for the exploitation of vast coal deposits that are unreachable by conventional mining and can meet the energy, economic and environmental demands of the 21st century. Due to the complexity of the process, and the site-specific coal and seam properties, it is important to acknowledge all the available data and past experiences, in order to conduct a successful UCG operation. Slovenia has huge unmined reserves of coal, and therefore offers the possibility of an alternative use of this domestic primary energy source. According to the available underground coal gasification technology, the energy and economic assessment for the exploitation of coal to generate electricity and heat was made. A new procedure for the estimation of the energy efficiency of the coal gasification process, which is also used to compare the energy analyses for different examples of coal exploitation, was proposed, as well as the technological schemes and plant operating mode in Velenje, and the use of produced synthetic coal gas (syngas). The proposed location for the pilot demonstration experiment in Velenje Coal Mine was reviewed and the viability of the underground coal gasification project in Velenje was determined.


Sign in / Sign up

Export Citation Format

Share Document