carbon capture and sequestration
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 46)

H-INDEX

24
(FIVE YEARS 5)

Author(s):  
Amal Haddad Haddad ◽  
Silvia Montero-Martínez

La metáfora es una herramienta poderosa de innovación, de generación de términos y de conceptualización especializada en el discurso científico. En este estudio, se analiza la metáfora subyacente en el neologismo «carbon capture and sequestration» en el subdominio del cambio climático desde el punto de vista de la teoría de la terminología basada en marcos. Se trata de un estudio de caso basado en un corpus inglés-árabe. Los resultados comparan el modelo metafórico del neologismo construido originariamente en inglés y su equivalente creado en árabe a través de un proceso de traducción que implica el trasvase de su marco metafórico.


2021 ◽  
Author(s):  
Clifford Louis ◽  
Hassan Khan ◽  
Yawar Ali

Abstract One of the harms to climate brought about by anthropogenically instigated environmental change is the overabundance creation of CO2 because of industrialization. Research and development endeavors so far have been focused on the improvement of CCS (Carbon Capture and Sequestration), with the fundamental spotlight on the best way to eliminate CO2 from vent gases and how to cover it perpetually in deep aquifers or depleted oil and gas reservoirs to save the environment from the detrimental effects of CO2. At one side, the alarming situation due to excess emission of CO2 from industries has been bulled out and simultaneously, there is higher potential for CO2 in the depleted oil fields which can aid to the Enhanced Oil Recovery (EOR) through the prolonged CO2 injection in depleted oil fields. It is currently turning out to be certain that CCS technology could advance the utilization of fossil fuels than in any case recently thought. This paper discusses the integration of Carbon Capture and Sequestration (CCS) technology with the progressive strategy of Enhanced Oil Recovery (EOR). CCS includes various advances that can be utilized to catch CO2 from point sources. Countries that are badly affected by the harmful effects of global warming with depleting oil reserves in the very near future can be the most viable target of the CCS Project. The scope and potential of different techniques of CCS along with the opportunities and challenges and the real case scenarios happening in the world are discussed in detail. The economics, process cycle and case studies of this futuristic technology intend to give valuable insight to the implementation of this integrated technique to the prevalent depleting oil fields around the globe.


2021 ◽  
Vol 2 (2) ◽  
pp. 55
Author(s):  
M Nabil Ziaudin Ahamed ◽  
Muhammad Azfar Mohamed ◽  
M Aslam Md Yusof ◽  
Iqmal Irshad ◽  
Nur Asyraf Md Akhir ◽  
...  

Carbon dioxide, CO2 emissions have risen precipitously over the last century, wreaking havoc on the atmosphere. Carbon Capture and Sequestration (CCS) techniques are being used to inject as much CO2 as possible and meet emission reduction targets with the fewest number of wells possible for economic reasons. However, CO2 injectivity is being reduced in sandstone formations due to significant CO2-brine-rock interactions in the form of salt precipitation and fines migration. The purpose of this project is to develop a regression model using linear regression and neural networks to correlate the combined effect of fines migration and salt precipitation on CO2 injectivity as a function of injection flow rates, brine salinities, particle sizes, and particle concentrations. Statistical analysis demonstrates that the neural network model has a reliable fit of 0.9882 in R Square and could be used to accurately predict the permeability changes expected during CO2 injection in sandstones.


Author(s):  
Mariam Yahaya-Shiru ◽  
Ogbonnaya Igwe ◽  
Seyi Obafemi

AbstractCarbon capture and sequestration technology has been a ground-breaking tool in tackling carbon dioxide (CO2) emissions worldwide but has limitedly been researched and practised in Africa at present. Considering the vast growth and developmental level in the continent, there is a need to consider this option of mitigating global climate change. In this study, a systematic and process-based incorporation of seismic and well logs datasets was used to characterize the structural and stratigraphic framework of sandstone reservoirs within the field in order to determine their capacities for effective CO2 sequestration. Petrophysical analysis, fault modelling as well as geostatistical techniques were used to build facies and property models which enabled a qualitative assessment of the sealing potential of faults associated with the reservoirs based on prediction of key properties such as shale gouge ratio, lithological juxtaposition, fault permeability and fault transmissibility across the fault faces. Nine water-bearing sandstone reservoirs (reservoirs A–J) with varying reservoir quality were identified in the field. The dominance of high SGR, low permeability, higher fault throws and low fault transmissibility values at the lower parts of the faults indicates the deeper structural traps of the field are low-risk zones and might serve as good storage areas for CO2.


2021 ◽  
Author(s):  
Marc A. Parker

Abstract Worldwide energy consumption is accelerating at an unprecedented rate while humanity comes to understand the effects of climate change. Renewable resources such as wind and solar supply more energy every year, but the overwhelming majority of energy consumed is still from fossil fuels. The transition to zero carbon emission sources is important, but carbon negative energy could also become necessary in ensuring a sustainable global environment and economy. The most technically and commercially viable carbon negative solution is biomass-fueled power generation with carbon capture and sequestration. A conceptual design based on a biomass-fired circulating fluidized-bed boiler and developed using the Thermoflex software package (Thermoflow, Inc.) is presented that can be evaluated and pursued by the research, engineering, and business communities. Recommendations are proposed for siting and fuel supply in the Southeastern U.S., with an evaluation of some of the impacts from wood harvesting, processing, and transportation to the lifecycle carbon emissions. An economic analysis of this carbon negative concept indicates that certain policy proposals in the U.S. could make biomass power generation with carbon capture and sequestration an economically feasible resource. Results show that an owner and/or the public could realize a net benefit of up to $332/MWh above and beyond marginal energy or capacity values under aggressive carbon pricing.


World on Fire ◽  
2021 ◽  
pp. 83-108
Author(s):  
Mark Rowlands

Available fossil energy sources are dubiously compatible with the goal of arresting climate change. Carbon capture and sequestration technologies currently do not work on an industrial scale, and even if they could be made to work, they will reduce the energy returned on energy invested (EROI) of fossil fuels to below acceptable levels. The EROI of nuclear fission is disputed, but most peer-reviewed work places it in the 5–14 range, making it of questionable utility. Nuclear fusion, if it works, will not be available in time. Some renewable sources—notably, various biofuels—have unacceptably low EROIs. The remaining forms of renewable energy—solar, wind, hydropower, and wave power—sport EROIs that are, at best, on the cusp of viability. There is reasonable hope for improvement in these technologies because they are, at present, immature. In the meantime, it would be ideal if we could find a way to give them an edge.


2021 ◽  
Vol 40 (6) ◽  
pp. 408-412
Author(s):  
Josef Paffenholz

To limit the warming of the planet to no more than a 2°C increase, models show that net-zero release of anthropomorphic CO2 must be achieved by the middle of the century. For the foreseeable future, the majority of the world's energy will still be provided by fossil fuels, so other methods, besides expanding the contribution of renewable energy, are needed in order to achieve this goal. According to the Intergovernmental Panel on Climate Change (IPCC), carbon capture and sequestration (CCS) is one such method, without which the cost to achieve the 2°C target would more than double. To achieve this climate goal, CCS efforts must increase by approximately 100-fold from current levels within the next 20 years. Geophysical simulations on suitable geologic models will provide an important tool to streamline and accelerate the vast expansion of geophysical site characterization and long-term monitoring tasks required for industrial-scale CCS to succeed.


Sign in / Sign up

Export Citation Format

Share Document