scholarly journals Economic Conditions for Developing Hydrogen Production Based on Coal Gasification with Carbon Capture and Storage in Poland

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5074
Author(s):  
Radosław Kaplan ◽  
Michał Kopacz

This study documents the results of economic assessment concerning four variants of coal gasification to hydrogen in a shell reactor. That assessment has been made using discounting methods (NPV: net present value, IRR: internal rate of return), as well as indicators based on a free cash flow to firm (FCFF) approach. Additionally, sensitivity analysis has been carried out, along with scenario analysis in current market conditions concerning prices of hard coal, lignite, hydrogen and CO2 allowances, as well as capital expenditures and costs related to carbon capture and storage (CCS) systems. Based on NPV results, a negative economic assessment has been obtained for all the analyzed variants varying within the range of EUR −903 to −142 million, although the variants based on hard coal achieved a positive IRR (5.1–5.7%) but lower than the assumed discount rates. In Polish conditions, the gasification of lignite seems to be unprofitable, in the assumed scale of total investment outlays and the current price of coal feedstock. The sensitivity analyses indicate that at least a 20% increase of hydrogen price would be required, or a similar reduction of capital expenditures (CAPEX) and costs of operation, for the best variant to make NPV positive. Analyses have also indicated that on the economic basis, only the prices of CO2 allowances exceeding EUR 40/Mg (EUR 52/Mg for lignite) would generate savings due to the availability of CCS systems.

Author(s):  
Michael Green

Underground coal gasification is a conversion and extraction process, for the production of useful synthetic product gas from an in-situ coal seam, to use in power generation, heat production or as a chemical feedstock. While many variants of the underground coal gasification process have been considered and over 75 trials performed throughout the world, the recent work has tended to focus on the control of the process, its environmental impact on underground and surface conditions and its potential for carbon capture and storage. Academic research has produced a set of mathematical models of underground coal gasification, and the European Union-supported programme has addressed the production of a decarbonised product gas for carbon capture and storage. In recent years, significant progress has been made into the modelling of tar formation, spalling, flows within the cavity and the control of minor gasification components, like BTEX and phenols, from underground coal gasification cavities (BTEX refers to the chemicals benzene, toluene, ethylbenzene and xylene). The paper reviews the most recent underground coal gasification field trial and modelling experience and refers to the pubic concern and caution by regulators that arise when a commercial or pilot-scale project seeks approval. It will propose solutions for the next generation of underground coal gasification projects. These include the need to access deeper coal seams and the use of new techniques for modelling the process.


2007 ◽  
Vol 1041 ◽  
Author(s):  
Roberto Dones ◽  
Christian Bauer ◽  
Thomas Heck ◽  
Oliver Mayer-Spohn ◽  
Markus Blesl

AbstractThe NEEDS project of the European Commission (2004-2008) continues the ExternE series, aiming at improving and integrating external cost assessment, LCA, and energy-economy modeling, using multi-criteria decision analysis for technology roadmap up to year 2050. The LCA covers power systems suitable for Europe. The paper presents environmental inventories and cumulative results for selected representative evolutionary hard coal and lignite power technologies, namely the Ultra-Supercritical Pulverized Combustion (USC-PC) and Integrated Gasification Combined Cycle (IGCC) technologies. The power units are modeled with and without Carbon Capture and Storage (CCS). The three main technology paths for CO2 capture are represented, namely pre-combustion, post-combustion, and oxy-fuel combustion. Pipeline transport and storage in geological formations like saline aquifers and depleted gas reservoirs, which are the most likely solutions to be implemented in Europe, are modeled for assumed average conditions. The entire energy chains from fuel extraction through, when applicable, the ultimate sequestration of CO2, are assessed, using ecoinvent as background LCA database.The results show that adding CCS to fossil power plants, although resulting in a large net decrease of the CO2 effluents to the atmosphere per unit of electricity, is likely to produce substantially more GHG than claimed by near-zero emission power plant promoters when the entire energy chain is accounted for, especially for post-combustion capture technologies and hard coal as a fuel. Besides, the lower net power plant efficiencies lead to higher consumption rate of non-renewable fossil fuel. Furthermore, consideration of the full spectrum of environmental burdens besides greenhouse gas (GHG) results in a less definite picture of the energy chain with CCS than obtained by just focusing on GHG reduction.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1129 ◽  
Author(s):  
Sara Restrepo-Valencia ◽  
Arnaldo Walter

For significantly reducing greenhouse gas emissions, those from electricity generation should be negative by the end of the century. In this sense, bio-energy with carbon capture and storage (BECCS) technology in sugarcane mills could be crucial. This paper presents a technical and economic assessment of BECCS systems in a typical Brazilian sugarcane mill, considering the adoption of advanced—although commercial—steam cogeneration systems. The technical results are based on computational simulations, considering CO2 capture both from fermentation (released during ethanol production) and due to biomass combustion. The post combustion capture technology based on amine was considered integrated to the mill and to the cogeneration system. A range of energy requirements and costs were taken from the literature, and different milling capacities and capturing rates were considered. Results show that CO2 capture from both flows is technically feasible. Capturing CO2 from fermentation is the alternative that should be prioritized as energy requirements for capturing from combustion are meaningful, with high impacts on surplus electricity. In the reference case, the cost of avoided CO2 emissions was estimated at 62 €/t CO2, and this can be reduced to 59 €/t CO2 in case of more efficient technologies, or even to 48 €/t CO2 in case of larger plants.


2021 ◽  
Vol 882 (1) ◽  
pp. 012083
Author(s):  
C M Yasin ◽  
B Yunianto ◽  
S Sugiarti ◽  
G K Hudaya

Abstract The implementation of downstream coal policies in Indonesia is regulated in Law Number 3 of 2020 to optimize coal’s domestic use and value-added. The policy is also supported by the issuance of fiscal, non-fiscal, and regional incentives. In Law Number 3 of 2020, the government of Indonesia states six types of coal downstream: coal upgrading; coal briquetting; cokes making; coal liquefaction; coal gasification; and coal slurry, yet the government has not defined which downstream coal products should be prioritized. Several parameters must be considered in implementing the downstream coal policy, those are the availability of coal and its characteristics, proven technology, economic and environmental feasibility. This study examines the mineral and coal sector regulation, taxation, coal resources and reserves, technology, and economics. In addition, to implement the commitment of reducing CO2 emissions, this study also considers applying Carbon Capture and Storage (CCS) or Carbon Capture, Utilization, and Storage (CCUS) technology to implement downstream coal policy.


Sign in / Sign up

Export Citation Format

Share Document