Design of a latent thermal energy storage system with embedded heat pipes

2014 ◽  
Vol 126 ◽  
pp. 266-280 ◽  
Author(s):  
K. Nithyanandam ◽  
R. Pitchumani
Author(s):  
Mahboobe Mahdavi ◽  
Saeed Tiari ◽  
Vivek Pawar

In the current study, the thermal characteristics of a low-temperature latent heat thermal energy storage system are studied numerically. A cylinder container encloses a paraffin-based PCM, which is heated via a heat transfer fluid passing through a tube at the center. Heat pipes are incorporated into the PCM to enhance the heat transfer rate between the heat transfer fluid and the PCM. In addition, high thermal conductive nanoparticles are dispersed into the PCM to increase its thermal conductivity. A transient model is developed using ANSYS-FLUENT to simulate the charging process and study the impact of heat pipes and nanoparticles on the performance of the system. The effects of different parameters, such as the quantities of heat pipes as well as the nanoparticles types and volume fraction, are investigated.


Author(s):  
Karthik Nithyanandam ◽  
Ranga Pitchumani

Due to the intermittent nature of solar energy availability, storing sun’s energy in the form of latent thermal energy of a phase change material (PCM) is an effective technique that is widely used in energy storage and load management applications. In a Latent Thermal Energy Storage System (LTES), a heat transfer fluid (HTF) exchanges energy with a PCM. The advantages of an LTES include its isothermal operation and high energy storage density. However, the low thermal conductivity of PCM poses a significant disadvantage due to reduction in the rate at which the PCM can be melted (charging) or solidified (discharging). This paper explores an approach to reducing the thermal resistance of PCM in a LTES through embedded heat pipes. A heat pipe is a passive heat transfer device that efficiently transfers large amount of energy between the PCM and HTF thus indirectly amplifying the effective thermal conductivity of PCM. A transient computational analysis of a shell and tube LTES embedded with heat pipes is performed for charging to determine the position of melt front and energy stored as a function of time. The influence of the number and orientation of heat pipes and design configuration of the system is analyzed to identify configurations that lead to improved effectiveness.


Sign in / Sign up

Export Citation Format

Share Document