Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit

2016 ◽  
Vol 179 ◽  
pp. 203-210 ◽  
Author(s):  
Y.B. Tao ◽  
V.P. Carey
2021 ◽  
pp. 1-37
Author(s):  
Lokesh Kalapala ◽  
Jaya Krishna Devanuri

Abstract Augmenting meting and solidification rates of latent heat storage unit (LHSU) is very much essential for its efficient operation. By the effective utilization of natural convection, rate of heat transfer can be enhanced and the conical shell is beneficent in this regard. Employing fins further improves the charging and discharging rates. Hence the current study is focused on analyzing melting and solidification characteristics of a conical shell and tube LHSU along with the effect of fin parameters viz. fin diameter and number of fins. Numerical analysis is chosen for this purpose and the performance is compared via melting/solidification times, energy stored, energy/exergy efficiencies. Initially the performance of unfinned conical shell is compared with the cylindrical shell without fins and then the effect of fin parameters is presented. For melting process conical shell is found to be superior to cylindrical shell. 34.46% reduction in melting time is noted by employing conical shell and rate of energy stored is also higher for conical shell. Increase in fin diameter caused an increase in melting time when 20 number of fins are used, whereas melting time got decreased with the increase in fin diameter when 5 number of fins are used. Hence, when a greater number of fins are employed lesser diameter is preferred for melting. For discharging process, conical shell took 60% more time than cylindrical shell. Even after employing fins, solidification time is not drastically reduced in comparison to cylindrical shell.


Green ◽  
2011 ◽  
Vol 1 (2) ◽  
Author(s):  
L. Chidambaram ◽  
A. S. Ramana ◽  
G. Kamaraj ◽  
R. Velraj

AbstractConventional cooling technologies that utilize harmful refrigerants consume more energy and cause peak loads leading to negative environmental impacts. As the world grapples with the energy and environmental crisis, there is an urgent need to develop and promote environmentally benign sustainable cooling technologies. Solar cooling is one such promising technology, given the fact that solar energy is the cheapest and most widely available renewable energy that matches the cooling load requirements. However thermal storage systems are essential to overcome the disadvantage of the intermittent nature of solar energy and variations in the cooling demand. The enhanced utilization of solar energy and other consequences of thermal storage integrated systems have gained the attention of researchers in recent years. The concept of combined sensible and latent heat storage system is successfully introduced in several applications and it has many advantages. This paper presents the performance of the solar collector system and the charging characteristics of a PCM based latent heat thermal storage unit, which is designed to provide continuous supply of heat for the operation of 1 kW vapor absorption refrigeration unit. Investigations on PCM integrated thermal storage system have revealed improvement in heat storage capacity, lower heat loss and an increased solar collector efficiency due to better thermal stratification.


2019 ◽  
Vol 75 (7) ◽  
pp. 489-508 ◽  
Author(s):  
Digant S. Mehta ◽  
Bhavesh Vaghela ◽  
Manish K. Rathod ◽  
Jyotirmay Banerjee

Sign in / Sign up

Export Citation Format

Share Document