Heat transfer intensification in horizontal shell and tube latent heat storage unit

2019 ◽  
Vol 75 (7) ◽  
pp. 489-508 ◽  
Author(s):  
Digant S. Mehta ◽  
Bhavesh Vaghela ◽  
Manish K. Rathod ◽  
Jyotirmay Banerjee
2021 ◽  
pp. 1-37
Author(s):  
Lokesh Kalapala ◽  
Jaya Krishna Devanuri

Abstract Augmenting meting and solidification rates of latent heat storage unit (LHSU) is very much essential for its efficient operation. By the effective utilization of natural convection, rate of heat transfer can be enhanced and the conical shell is beneficent in this regard. Employing fins further improves the charging and discharging rates. Hence the current study is focused on analyzing melting and solidification characteristics of a conical shell and tube LHSU along with the effect of fin parameters viz. fin diameter and number of fins. Numerical analysis is chosen for this purpose and the performance is compared via melting/solidification times, energy stored, energy/exergy efficiencies. Initially the performance of unfinned conical shell is compared with the cylindrical shell without fins and then the effect of fin parameters is presented. For melting process conical shell is found to be superior to cylindrical shell. 34.46% reduction in melting time is noted by employing conical shell and rate of energy stored is also higher for conical shell. Increase in fin diameter caused an increase in melting time when 20 number of fins are used, whereas melting time got decreased with the increase in fin diameter when 5 number of fins are used. Hence, when a greater number of fins are employed lesser diameter is preferred for melting. For discharging process, conical shell took 60% more time than cylindrical shell. Even after employing fins, solidification time is not drastically reduced in comparison to cylindrical shell.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2264 ◽  
Author(s):  
Sebastian Ammann ◽  
Andreas Ammann ◽  
Rebecca Ravotti ◽  
Ludger Fischer ◽  
Anastasia Stamatiou ◽  
...  

The problem of emulsification between Phase Change Material (PCM) and Heat Transfer Fluid (HTF) in direct contact latent heat storage systems has been reported in various studies. This issue causes the PCM to flow out of the storage tank and crystallize at unwanted locations and thus presents a major limitation for the proper operation of such systems. These anomalies become more pronounced when high HTF flow rates are employed with the aim to achieve fast heat transfer rates. The goal of this paper is to find a method which will enable the fast separation of the formed emulsion and thus the uninterrupted operation of the storage unit. In this study, three separation methods were examined and the use of superhydrophobic filters was chosen as the best candidate for the demulsification of the PCM and HTF mixtures. The filter was produced by processing of a melamine sponge with different superhydrophobic adhesives and was tested with emulsions closely resembling the ones formed in a real direct contact setup. The superhydrophobic filter obtained, was able to separate the emulsions effectively while presenting a very high permeability (up to 1,194,980 kg h−1 m−2 bar−1). This is the first time the use of a superhydrophobic sponge has been investigated in the context of demulsification in direct contact latent heat storage.


Heat Transfer ◽  
2020 ◽  
Vol 49 (5) ◽  
pp. 2659-2685
Author(s):  
Digant S. Mehta ◽  
Bhavesh Vaghela ◽  
Manish K. Rathod ◽  
Jyotirmay Banerjee

1993 ◽  
Vol 115 (4) ◽  
pp. 240-243 ◽  
Author(s):  
Ch. Charach

This communication extends the thermodynamic analysis of latent heat storage in a shell-and-tube heat exchanger, developed recently, to the complete heat storage-removal cycle. Conditions for the cyclic operation of this system are formulated within the quasi-steady approximation for the axisymmetric two-dimensional conduction-controlled phase change. Explicit expressions for the overall number of entropy generation units that account for heat transfer and pressure drop irreversibilities are derived. Optimization of this figure of merit with respect to the freezing point of the phase-change material and with respect to the number of heat transfer units is analyzed. When the frictional irreversibilities of the heat removal stage are negligible, the results of these studies are in agreement with those developed recently by De Lucia and Bejan (1991) for a one-dimensional latent heat storage system.


2016 ◽  
Vol 64 (2) ◽  
pp. 401-408
Author(s):  
J. Karwacki ◽  
K. Bogucka-Bykuć ◽  
W. Włosiński ◽  
S. Bykuć

Abstract This paper presents an experimental study performed with the general aim of defining procedures for calculation and optimization of shell-and-tube latent thermal energy storage unit with metals or metal alloys as PCMs. The experimental study is focused on receiving the exact information about heat transfer between heat transfer fluid (HTF) and phase change material (PCM) during energy accumulation process. Therefore, simple geometry of heat transfer area was selected. Two configurations of shell-and-tube thermal energy storage (TES) units were investigated. The paper also highlights the emerging trend (reflected in the literature) with respect to the investigation of metal PCM-based heat storage units in recent years and shortly presents unique properties and application features of this relatively new class of PCMs.


2020 ◽  
Author(s):  
Raja Elarem ◽  
Talal Alqahtani ◽  
Sofiene Mellouli ◽  
Faouzi Askri ◽  
Abhilash Edacherian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document