Feasibility study about using a stand-alone wind power driven heat pump for space heating

2018 ◽  
Vol 228 ◽  
pp. 1486-1498 ◽  
Author(s):  
Hailong Li ◽  
Pietro Elia Campana ◽  
Yuting Tan ◽  
Jinyue Yan
Author(s):  
Giovanni Nurzia ◽  
Giuseppe Franchini ◽  
Antonio Perdichizzi

The deployment of solar driven air conditioning is a feasible target in all countries where high solar irradiation matches high cooling loads in buildings: the goal is to gradually replace compression chillers and reduce peak electricity demand during summer. Moreover, as solar thermal collectors are installed, solar cooling systems can be profitably employed during winter. In the present work a code has been implemented for the simulation and the design optimization of combined solar heating and cooling systems. The following system layout has been considered: in warm months the cooling demand is satisfied by means of an absorption chiller — driven by a solar collector field — and a reversible heat pump operating in series. A hot storage matches the variability of solar radiation, while a cold storage smoothes the non-stationarity of cooling demand. During winter, the reversible compression heat pump operates for space heating. Solar collectors are used as thermal source at the evaporator of the heat pump, increasing its coefficient of performance. The code, based on TRNSYS platform, is able to simulate the system throughout a year. Besides TRNSYS standard components a detailed model of the absorption chiller has been included, in order to accurately simulate its off-design operation. Using an optimization tool the size of each component is identified for a given space heating and cooling demand. The minimization of life cycle costs of the system has been chosen as the objective of the optimization. Results of a case study are presented and discussed for a solar heating and cooling plant in an office building. The optimization procedure has been carried out with simulations for a typical Northern Italy town (Alpine climate) and a typical Southern Italy town (Mediterranean climate).


Author(s):  
Juanli Ma ◽  
Alan S. Fung ◽  
Monica Brands ◽  
Osama Mohammad Abul Moyeed ◽  
Ahmad Mhanna ◽  
...  

2004 ◽  
Vol 12 ◽  
pp. 227-232
Author(s):  
Susumu SHIMADA ◽  
Teruo OHSAWA ◽  
Kazuhito FUKAO ◽  
Atsushi HASHIMOTO ◽  
Tomokazu MURAKAMI ◽  
...  

Energetika ◽  
2017 ◽  
Vol 63 (3) ◽  
Author(s):  
Volodymyr A. Voloshchuk

In addition to conventional exergy-based methods, advanced exergetic analyses consider the interactions among components of the energy-conversion system and the real potential for improving each system component. The paper demonstrates the results of application of a detailed advanced exergetic analysis to a wastewater source heat pump providing space heating in the built environment. In order to determine thermodynamic parameters of the refrigeration vapour compression cycle in different operating modes, the simulation model has been used. The analysis includes splitting the exergy destruction within each component of a heat pump into unavoidable, avoidable, endogenous and exogenous parts as well as detailed splitting of the avoidable exogenous exergy destruction. Besides, variabilities of heating demands of a building within both the chosen heating season and also from year to year are taken into account. Distribution of the split exergy destructions during different periods of time is also presented for the analysed cases of the heat pump and built environment. It is shown that in the investigated system only about 50% of the total annual destruction in components of the heat pump can be avoided. About 30…40% of this avoidable thermodynamic inefficiency is caused by interactions among components. Based on the applied advanced exergetic analysis it is possible to receive more precise and useful information for better understanding and improving the design and operation of the analysed energy-conversion system.


Sign in / Sign up

Export Citation Format

Share Document