pump system
Recently Published Documents





2022 ◽  
Vol 305 ◽  
pp. 114378
Tianzuo Zhang ◽  
Yijie Zhai ◽  
Shoutao Feng ◽  
Xianfeng Tan ◽  
Mingde Zhang ◽  

2022 ◽  
Vol 166 ◽  
pp. 108692
Tat Nghia Nguyen ◽  
Roberto Ponciroli ◽  
Timothy Kibler ◽  
Marc Anderson ◽  
Molly J. Strasser ◽  

2022 ◽  
Vol 308 ◽  
pp. 118204
Christian Vering ◽  
Laura Maier ◽  
Katharina Breuer ◽  
Hannah Krützfeldt ◽  
Rita Streblow ◽  

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 528
Sangmu Bae ◽  
Soowon Chae ◽  
Yujin Nam

The concept of zero energy buildings (ZEBs) has recently been actively introduced in the building sector, globally, to reduce energy consumption and carbon emissions. For the implementation of ZEBs, renewable energy systems, such as solar collectors, photovoltaic (PV) systems, and ground source heat pump (GSHP) systems, have been used. The system performance of solar collectors and PV systems are dependent on the weather conditions. A GSHP system requires a large area for boring machines and mud pump machines. Therefore, inhabitants of an existing small-scale buildings hesitate to introduce GSHP systems due to the difficulties in installation and limited construction area. This study proposes an integrate photovoltaic-thermal (PVT) and air source heat pump (ASHP) system for realizing ZEB in an existing small-scale building. In order to evaluate the applicability of the integrated PVT-ASHP system, a dynamic simulation model that combines the PVT-ASHP system model and the building load model based on actual building conditions was constructed. The heating and cooling performances of the system for one year were analyzed using the dynamic simulation model. As the simulation analysis results, the average coefficient of performance (COP) for heating season was 5.3, and the average COP for cooling season was 16.3., respectively. From April to June, the electrical produced by the PVT module was higher than the power consumption of the system and could realize ZEB.

Rabih Al Haddad ◽  
Hussein Basma ◽  
Charbel Mansour

Given the continuous tightening of emissions regulations on vehicles, battery-electric buses (BEB) play an essential role in the transition toward cleaner transport technologies, as they represent the most promising solution to replace diesel buses and reduce their environmental impact in the short term. However, heating the bus cabin leads to a considerable increase in energy consumption under cold weather conditions, which significantly reduces the driving range, given the limited battery capacity. Heat pumps (HP) are the primary heating technology used in BEB for their improved consumption performance compared to other technologies. Therefore, this study aims at optimizing the coefficient of performance (COP) of an HP system in a BEB for maximizing the bus electric driving range under cold weather conditions while maintaining satisfactory thermal comfort levels for passengers. Accordingly, an HP model is developed and integrated into an electric bus model using Dymola. A genetic algorithm (GA) based controller is proposed to find the optimal combination of the HP operating parameters, namely the compressor speed, the air mass flow rate at the inlet of the condenser, and the recirculation rate in order to maximize the system’s COP, and extend the BEB driving at different external temperatures, and as a function of the passengers’ occupancy levels. Results are carried under transient and steady-state operating conditions and show that the proposed GA-based controller saves up to 39% of the HP energy consumption as compared to the conventional HP control strategy, and therefore, enhances the BEB driving range up to 17%.

2022 ◽  
Vol 9 ◽  
Yu-Jin Kim ◽  
Libing Yang ◽  
Evgueniy Entchev ◽  
Soolyeon Cho ◽  
Eun-Chul Kang ◽  

In this paper, the development and demonstration of a hybrid solar geothermal heat pump polygeneration system is presented. The poly-generation system has been designed, modeled, and simulated in TRNSYS software environment. Its performance was assessed followed by installation and demonstration at a demo site in Cheongju, Korea. The space heating and cooling load of the building is 13.8 kW in heating mode at an ambient temperature of −10.3°C and 10.6 kW in cooling mode at an ambient temperature of 32.3°C. The simulation data were compared with the field demo data using ISO 13256. The results showed that the model data compare well with the demo data both in heating and cooling modes of operation. At a source temperature of 16.7°C, the heat pump lab performance data-based COPc shows 9.9, while demonstration COPc shows 10.3, thus, representing 4.3% relative error. The heat pump source temperature decreased by 4.0°C from 20.9°C to 16.9°C due to ground heat exchanger coupling and resulted in a COPc increase by 13.3% from 8.5 to 9.8. When compared at the design conditions (outside temperature of 32.3°C), the TRSNYS model overestimated the demonstration site data by 12%, 9.3 vs. 8.1 kW with power consumption of 3.1 vs. 2.2 kW. The hybrid polygeneration system power consumption decreased by 1.2 kW when ambient temperature decreased from 35°C to 25°C.

Sign in / Sign up

Export Citation Format

Share Document