Non-catalytic ash effect on char reactivity

2020 ◽  
Vol 260 ◽  
pp. 114358 ◽  
Author(s):  
Ruochen Wu ◽  
Jacob Beutler ◽  
Larry L. Baxter
Keyword(s):  
2017 ◽  
Vol 32 (4) ◽  
pp. 4149-4159 ◽  
Author(s):  
Daniel J. Lane ◽  
Ewan Truong ◽  
Francesca Larizza ◽  
Precilla Chiew ◽  
Rocky de Nys ◽  
...  

Author(s):  
E. Haley ◽  
K.M. Thomas ◽  
H. Marsh ◽  
I.A.S. Edwards
Keyword(s):  

2020 ◽  
Vol 8 ◽  
pp. 100072
Author(s):  
Kagiso Bikane ◽  
Jie Yu ◽  
Xiangyi Long ◽  
Nigel Paterson ◽  
Marcos Millan

2019 ◽  
Vol 109 ◽  
pp. 00101
Author(s):  
Oleksandr Topal ◽  
Iryna Holenko ◽  
Inna Diakun

The results of determination of parameters of porous structure of coal and char particles are presented. They were determined using gas adsorption method and thermal decomposition of particles in air oxygen. The porous structure parameters allow predicting char reactivity change at different temperatures as well as during conversion in accordance with Random Pore Model (RPM-model).


Author(s):  
Guang Xu ◽  
Wei Zhou ◽  
Larry Swanson

Biomass reburn is a low NOx alternative to cofiring that effectively uses the high volatility and high char reactivity of biomass for NOx reduction. In this paper, computational fluid dynamics (CFD) and thermal modeling, and a NOx prediction model were used to evaluate the impacts of sawdust/coal reburn on the performance of a 250 MW opposed-fired boiler burning bituminous coal as the primary fuel. The results showed that the reburn system maintained overall boiler performance with a 50 – 70 °F reduction in the furnace exit gas temperature. Predicted losses in thermal efficiency were caused by the lower biomass fuel heating value (similar to biomass cofiring) and increase in unburned carbon. The higher unburned carbon emissions were attributed to an order of magnitude larger biomass mean particle size relative to bituminous coal. Thus, LOI emissions can be improved significantly by reducing the biomass mean particle size. The NOx predictions showed that for reburn rates above about 19%, adding dry sawdust biomass to a coal reburn system can improve NOx reduction; i.e., using pure dry sawdust as reburn fuel at 30% of the total heat input can lead to NOx levels about 30% less than those for pure coal reburn under for similar firing conditions.


2015 ◽  
Vol 74 (10) ◽  
Author(s):  
N. Ismail ◽  
G. S. Ho ◽  
N. A. S. Amin ◽  
F. N. Ani

Conventional pressurized gasification operates at higher pressure than atmospheric pressure and requires heat up time during startup. In this study, microwave plasma gasification was used to compensate this problem. The objectives of this paper is to investigate the CO2 microwave gasification of EFB and OPS biochar, and optimizing the char reaction rate through the addition of activated carbon as the microwave absorber. A microwave plasma gasification test rig was designed to produce syngas from oil palm biochar. From the study, it was found that EFB char performed better than OPS char as gasification fuel due to its high porosity and surface area that increased the char reactivity towards CO2. The temperature increment promoted by the addition of MW absorber using activated carbon (AC) has increased the CO composition. The optimum condition for microwave plasma char gasification of EFB was 3 lpm with 25 wt% AC that produced syngas with 1.23 vol% CH4, 20.88 vol% CO2, 43.83 vol% CO, 34.06 vol% H2 and 9.40 MJ/kg gas CV. For OPS is at 2 lpm with 1.12 vol% CH4, 35.11 vol% CO2, 35.42 vol% CO, 28.35 vol% H2 and 7.32 MJ/kg gas CV. As EFB char has larger BET surface areas and larger pores than OPS char, the ability to react with the gasifying gas is better than the OPS. Thus, resulting in higher carbon conversion. The best gasification efficiency was 72.34% at 3 lpm, 10% AC for EFB biochar plasma gasification with 12% unreacted carbon. For OPS biochar plasma gasification, the best gasification efficiency was 69.09% at 2 lpm, 10% AC with 18% unreacted carbon.


Sign in / Sign up

Export Citation Format

Share Document