Activated Carbon
Recently Published Documents


(FIVE YEARS 11038)



K Arun Kumar ◽  
Sandeep. S,

This research work goals at searching the effectiveness of Malachite Green dye removal using banana stem, an agricultural waste as an activated carbon. The banana stem activated carbon was made ready in the laboratory by carbonization followed by activation. Adsorption studies were carried out to check the effect of various experimental conditions like different pH values, varying contact time, initial concentration of dye and changing banana stem carbon dosage on the removal of Malachite Green dye from aqueous solution at constant Temperature and agitation speed. The equilibrium experimental data were used for applicability of Langmuir and Freundlich isotherm models and the kinetic models. Batch test showed that maximum of 99% of dye was removed when the dye concentration was 2 mg/L, at an adsorbent dose of 0.75 gm/L at dye pH 8 in 45 minutes. From the obtained results it is validated that the equilibrium data’s favorable for both Freundlich and Langmuir isotherms. Maximum adsorption capacity of banana stem carbon on malachite green dye was found to be 8.29 mg/g. It was prevailing that the adsorption process followed the pseudo-second-order rate kinetics. It was observed that intra particle diffusion is not the only rate-limiting step in this adsorption system but also regression results indicate that the linear regression model gives the best results. The above observations recommend that Banana stem carbon can be competently implemented for removal of malachite green dye from aqueous solution in the adsorption treatment processes.

ACS Omega ◽  
2021 ◽  
Julian Steinhaus ◽  
Christoph Pasel ◽  
Christian Bläker ◽  
Dieter Bathen

2021 ◽  
Vol 8 (1) ◽  
R. Kayiwa ◽  
H. Kasedde ◽  
M. Lubwama ◽  
J. B. Kirabira

AbstractThe search for alternatives to fossil-based commercial activated carbon (AC) continues to reveal new eco-friendly potential precursors, among which is agricultural waste. The key research aspect in all these endeavors is empirical ascertainment of the core properties of the resultant AC to suit a particular purpose. These properties include: yield, surface area, pore volume, and the active surface groups. It is therefore pertinent to have process conditions controlled and tailored towards these properties for the required resultant AC. Pre-leaching cassava peels with NaOH followed by KOH activation and carbonization at holding temperatures (780 °C) above the melting point of K (760 °C) yielded mesoporous activated carbon with the highest surface area ever reported for cassava peel-based AC. The carbonization temperatures were between 480 and 780 °C in an activation–carbonization stepwise process using KOH as the activator at a KOH:peel ratio of 5:2 (mass basis). A 42% maximum yield of AC was realized along with a total pore volume of 0.756 cm3g−1 and BET surface area of 1684 m2g−1. The AC was dominantly microporous for carbonization temperatures below 780 °C, but a remarkable increase in mesopore volume (0.471 cm3g−1) relative to the micropore volume (0.281 cm3g−1) was observed at 780 °C. The Fourier transform infrared (FTIR) spectroscopy for the pre-treated cassava peels showed distortion in the C–H bonding depicting possible elaboration of more lignin from cellulose disruption by NaOH. A carboxylate stretch was also observed owing to the reaction of Na+ ions with the carboxyl group in the raw peels. FTIR showed possible absorption bands for the AC between 1425 and 1712 cm−1 wave numbers. Besides the botanical qualities of the cassava peel genotype used, pre-leaching the peels and also increasing holding activation temperature above the boiling point of potassium enabled the modified process of producing highly porous AC from cassava peel. The scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed well-developed hexagonal pores in the resultant AC and intercalated K profile in the carbon matrices, respectively.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3862
Marek Wojnicki ◽  
Andrzej Krawontka ◽  
Konrad Wojtaszek ◽  
Katarzyna Skibińska ◽  
Edit Csapó ◽  

In the paper, the mechanism of the process of the Rh(III) ions adsorption on activated carbon ORGANOSORB 10—AA was investigated. It was shown, that the process is reversible, i.e., stripping of Rh(III) ions from activated carbon to the solution is also possible. This opens the possibility of industrial recovery of Rh (III) ions from highly dilute aqueous solutions. The activation energies for the forward and backward reaction were determined These are equal to c.a. 7 and 0 kJ/mol. respectively. Unfortunately, the efficiency of this process was low. Obtained maximum load of Rh(III) was equal to 1.13 mg per 1 g of activated carbon.

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1649
Dalai Jin ◽  
Jiamin Zhou ◽  
Tianpeng Yang ◽  
Saisai Li ◽  
Lina Wang ◽  

The advantage of low resistivity and inactive binders makes binder-free electrode an excellent candidate for high-performance energy devices. A simple hydrothermal method was used to fabricate M11(HPO3)8(OH)6 (M: Ni and Co) (MHP) arrays combined with activated carbon fabric (ACF) without binder. The structures of MHP can be easily tuned from bouquets to nano-sheets by the concentration of NaH2PO2. The MHP/ACF composite materials with different structures showed the typical battery-type characteristic of anodic electrodes. In a three-electrode cell configuration, the MHP nano-sheet arrays/ACF composite has a higher capacity, of 1254 F/g, at a scan rate of 10 mA/cm2 and shows better cycling stability: 84.3% remaining specific capacity after 1000 cycles of charge-discharge measurement. The composite is highly flexible, with almost the same electrochemical performance under stretching mode. The MHP/ACF [email protected] hybrid supercapacitor can deliver the highest energy density, of 34.1 Wh·kg−1, and a power density of 722 W·kg−1 at 1 A·g−1. As indicated by the results, MHP/ACF composite materials are excellent binder-free electrodes, candidates for flexible high-performance hybrid super-capacitor devices.

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1091
Michelle Finn ◽  
Gabrielle Giampietro ◽  
David Mazyck ◽  
Regina Rodriguez

Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ damage. The application of activated carbon (AC) for organic contaminant removal is widespread and applied successfully for water treatment. The objective of this study is to rapidly adsorb ibuprofen using AC to determine the feasibility as a point-of-entry treatment option for removal of pharmaceuticals in the toilet. AC factors analyzed include type of AC raw material, adsorbent particle size, contact time, and competitive adsorption of ibuprofen and common toilet bowl cleaner components such as chlorine and methylene blue dye. A coconut-based AC with a high surface area adsorbed the highest quantity of ibuprofen. There was no significant impact to ibuprofen adsorption upon the introduction of other compounds to the solution, thus demonstrating rapid adsorption and the potential for application at the point-of-entry.

2021 ◽  
Vol 13 (13) ◽  
pp. 7077
Khamael M. Abualnaja ◽  
Ahmed E. Alprol ◽  
M. A. Abu-Saied ◽  
Mohamed Ashour ◽  
Abdallah Tageldein Mansour

This paper presents an estimation of the adsorptive potential of multiwalled carbon nanotubes (MWCNTs) and modified poly (acrylonitrile-co-styrene) with activated carbon for the uptake of reactive red 35 (RR35) dye from aqueous solution by a batch system. MWCNT adsorbent was synthesized by encapsulation via in situ polymerization. The copolymer material of poly (acrylonitrile-styrene) P (AN-co-ST) was prepared in a ratio of 2:1 V/V by the precipitation polymerization process. The prepared composites’ properties were characterized by FTIR, SEM, Raman, mean particle size (PSA), and XRD analysis. The PSA of the copolymeric material was determined to be 450.5 and 994 nm for MWCNTs and P(AN-co-St)/AC, respectively. Moreover, the influences of different factors, for example pH (2–10), adsorbents dosage (0.005–0.04 g), contact time (5–120 min), initial dye concentration (10–50 mg L−1), and temperature (25–55 °C). The optimum values were determined to be 2 and 4 pH, 10 mg L−1 of RR35 dye, and 0.04 g of adsorbents at early contact time. Furthermore, the adsorption isotherm was studied using Langmuir, Freundlich, Tempkin, and Halsey models. Maximum capacity qmax for MWCNTS and P (AN-co-St)/AC was 256.41 and 30.30 mg g−1, respectively. The investigational kinetic study was appropriated well via a pseudo second-order model with a correlation coefficient around 0.99. Thermodynamic study displayed that the removal of RR35 is exothermic, a spontaneous and physisorption system. The adsorption efficiency reduced to around 54–55% of the RR35 after four cycles of reuse of the adsorbents at 120 min.

2021 ◽  
Vol 13 (13) ◽  
pp. 7061
Athanasia K. Tolkou ◽  
Natalia Manousi ◽  
George A. Zachariadis ◽  
Ioannis A. Katsoyiannis ◽  
Eleni A. Deliyanni

In recent years, there has been an increase in public perception of the detrimental side-effects of fluoride to human health due to its effects on teeth and bones. Today, there is a plethora of techniques available for the removal of fluoride from drinking water. Among them, adsorption is a very prospective method because of its handy operation, cost efficiency, and high selectivity. Along with efforts to assist fluoride removal from drinking waters, extensive attention has been also paid to the accurate measurement of fluoride in water. Currently, the analytical methods that are used for fluoride determination can be classified into chromatographic methods (e.g., ionic chromatography), electrochemical methods (e.g., voltammetry, potentiometry, and polarography), spectroscopic methods (e.g., molecular absorption spectrometry), microfluidic analysis (e.g., flow injection analysis and sequential injection analysis), titration, and sensors. In this review article, we discuss the available techniques and the ongoing effort for achieving enhanced fluoride removal by applying novel adsorbents such as carbon-based materials (i.e., activated carbon, graphene oxide, and carbon nanotubes) and nanostructured materials, combining metals and their oxides or hydroxides as well as natural materials. Emphasis has been given to the use of lanthanum (La) in the modification of materials, both activated carbon and hybrid materials (i.e., La/Mg/Si-AC, La/MA, LaFeO3 NPs), and in the use of MgO nanostructures, which are found to exhibit an adsorption capacity of up to 29,131 mg g−1. The existing analytical methodologies and the current trends in analytical chemistry for fluoride determination in drinking water are also discussed.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3790
Pratama Jujur Wibawa ◽  
Muhammad Nur ◽  
Mukhammad Asy’ari ◽  
Wijanarka Wijanarka ◽  
Heru Susanto ◽  

This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs–ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis’s spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).

Export Citation Format

Share Document