Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer
Latest Publications


TOTAL DOCUMENTS

104
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By ASMEDC

9780791843581

Author(s):  
Massimo Paroncini ◽  
Francesco Corvaro ◽  
Alessia Montucchiari

The present study is an experimental and numerical analysis on the natural convection of air in square enclosures with partially active side walls. The experimental equipment is based on two different systems: an holographic interferometer and a 2D-PIV. The test cell is a square enclosure filled of air with vertical partially active side walls at different temperatures. The hot and cold regions on these sides are located in the middle of the cavity. The remaining vertical walls are made up of glass to allow an optical access to the cavity. The top and bottom surfaces of the enclosure are made up of plexiglas to reduce heat leakages. The experimental study is carried out both through the holographic interferometry, in order to obtain the average Nusselt numbers at different Rayleigh numbers, and through the 2D-PIV, in order to analyse the dynamic behaviour of the phenomenon at the same Rayleigh numbers. The average Nusselt numbers are obtained measuring the temperature distribution in the air layer trough the real-time and double-exposure holographic interferometry; the dynamic structures are the velocity vector distribution, the streamlines and the velocity maps. Finally these experimental data are compared to the results obtained through a numerical study carried out using the finite volume code, Fluent 6.2.3. The aim of this comparison is the validation of the numerical procedure. In this way it is possible to use the numerical code to enlarge the Rayleigh number range.


Author(s):  
Alexander L. Brown

Transportation accidents and the subsequent fire present a concern. Particularly energetic accidents like an aircraft impact or a high speed highway accident can be quite violent. We would like to develop and maintain a capability at Sandia National Laboratories to model these very challenging events. We have identified Smoothed Particle Hydrodynamics (SPH) as a good method to employ for the impact dynamics of the fluid for severe impacts. SPH is capable of modeling viscous and inertial effects for these impacts for short times. We have also identified our fire code Lagrangian/Eulerian (L/E) particle capability as an adequate method for fuel transport and spray modeling. A fire code can also model the subsequent fire for a fuel impact. Surface deposition of the liquid may also be acceptably predicted with the same code. These two methods (SPH and L/E) typically employ complimentary length and timescales for the calculation, and are potentially suited for coupling given adequate attention to relevant details. Length and timescale interactions are important considerations when joining the two capabilities. Additionally, there are physical model inadequacy considerations that contribute to the accuracy of the methodology. These models and methods are presented and evaluated. Some of these concerns are detailed for a verification type scenario used to show the work in progress of this coupling capability. The importance of validation methods and their appropriate application to the genesis of this class of predictive tool are also discussed.


Author(s):  
Hui Yang ◽  
Li Jia ◽  
Lixin Yang

In this paper, piston wind effect on smoke diffusion characteristic in subway tunnel is studied by using three-dimensional transient computational fluid dynamics (CFD) method. In the first simulation case, fire disaster is simulated with homogeneous resting initial field condition. In the second simulation case, the train’s decelerating process till stopping in the tunnel is simulated for getting three-dimensional tunnel air velocity field distribution. Then the final heterogeneous air velocity field when the train stops in the tunnel is taken as initial field condition and the same fire scenario as the first case is simulated again. The data obtained under both initial conditions are compared by detecting people evacuation safety and the influence of initial air velocity field is analyzed. The results show that the inertial air velocity field caused by train’s movement has significant influence on smoke diffusion at the first few minutes of fire disaster, which is the key time for people’s evacuation. The adopted method in this paper and the simulation result could be used in establishing more effective subway fire evacuation plan.


Author(s):  
Vijay M. Sundaram ◽  
Sy-Bor Wen

Nano-patterns are generated on semiconducting and metallic surfaces through coupling an apertured near field scanning optical microscope (NSOM) with a pulsed laser source in this study. To understand the dominant mechanisms for the generation of the nano-patterns, a series of experimental measurement of the size and shape of nano-patterns generated on targets under different experimental conditions with different targets is conducted. The characteristic dimensions of nano-patterns show dependence on optical properties of the target material. The qualitative trend of the variation of nano-patterns as a function of laser and material conditions indicates that the dominant mechanisms for the generation of nano-patterns through a combination of nanosecond laser and an apertured NSOM under different conditions studied is near field laser-material interaction.


Author(s):  
J. Vadasz ◽  
J. P. Meyer ◽  
S. Govender ◽  
M. Andrick ◽  
W. Carter ◽  
...  

Preliminary evidence of density and mechanical properties enhancement of binary alloys by solidification subject to vibrations is presented. The frequency of vibrations was increased from 0 to 100 Hz by using sound waves as the vibration source. The latter shows that the solidified microstructure, the ultimate tensile strength, and the hardness improve as the frequency increases. The chosen alloy for this study was Pb-Sb 4.4% (lead antimony 4.4%) and was selected because of its low melting temperature. The cast chosen was of a rod shape having a diameter of 10mm and a length 500mm. This choice is consistent with assuming an infinite length and therefore ignoring boundary effects in a planned theoretical follow-up analysis. Also due to the geometry of the mould it can be assumed that the cast was cooled due to conduction alone.


Author(s):  
Nobuhiko Fukuda ◽  
Satoshi Someya ◽  
Koji Okamoto

It is thought that the pressure fluctuation can occur due to the interaction between flow through guide vanes and flow into runner blades, resulting in a vibration of turbine and a blade cracking, in a hydraulic turbine operated in a wide range for flexible power demand. High accurate velocity measurement with high time/spatial resolution can help to clarify the mechanism of the interaction and to provide good experimental data for the validation of numerical procedure. So the aim of present study is to estimate the unstable velocity field quantitatively in the area between guide vanes and runner blades, using high time-resolved particle image velocimetry (PIV). Two types of velocity measurements were carried out, i.e., phase-locked measurement and high time sequential velocity measurement, in a pump-turbine model with 20 guide vanes and 6 runner blades. The characteristic of the flow field varied corresponding to the operating conditions such as flow rate and rotational speed. Opening angles of guide vanes were kept uniform. A clockwise vortex was generated at inside of the runner blade under smaller rotational speed. A counterclockwise vortex was separated at the backside of the runner blade under higher rotational speed. At any operating conditions, the velocity between guide vanes and runner blades oscillated periodically at the blade passing frequency.


Author(s):  
Robert E. Spall ◽  
Brandon Wilson ◽  
Eric Callister

The thermal behavior of Utah Lake, situated in northern Utah, is modeled over a spring-to-fall period using environmental forcing data from the year 2007. Results compare favorably with previously obtained data for temperature distributions around the lake during midsummer 2007. During the spring months, when experimental data is not available, the model predicts strong and rapid variations in the water temperature, which correlate well with significant storms on the lake. A heat balance shows that the largest components of heat fluxes into and out of the lake are due to short wave solar and evaporative cooling, respectively. Both numerical and experimental results also indicate that, due to the shallow nature of the lake and occurrence of significant wind events, thermal stratification is never achieved.


Author(s):  
Jeffrey J. Lombardo ◽  
Wilson K. S. Chiu

Even though a large number of applications for multiwalled carbon nanotubes have been proposed, there is relatively limited knowledge about the optimal conditions in which to create multiwalled carbon nanotubes (MWNTs). Computational models have been shown to be a promising tool to determine the best carbon nanotube growth conditions. In this paper the growth of MWNTs in a tube flow CVD reactor was studied through the use of the commercial software package COMSOL, where details steps have been described to reformulate an existing single walled carbon nanotube (SWNT) growth model to accommodate MWNTs followed by validation and growth rate prediction. Higher growth rates were predicted for MWNTs than SWNTs which is a result of the increase in pathways for carbon to form carbon nanotubes based on the additional walls. Results indicate that selecting the correct number of walls can be important to the results of the model.


Author(s):  
M. F. M. Speetjens

Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer coefficients. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the transport of fluid by the flow field. The paths followed by the total heat flux are the thermal counterpart to fluid trajectories and facilitate heat-transfer visualisation in a similar manner as flow visualisation. This has great potential for applications in which insight into the heat fluxes throughout the entire configuration is essential (e.g. cooling systems, heat exchangers). To date this concept has been restricted to 2D steady flows. The present study proposes its generalisation to 3D unsteady flows by representing heat transfer as the 3D unsteady motion of a virtual fluid subject to continuity. The heat-transfer visualisation is provided with a physical framework and demonstrated by way of representative examples. Furthermore, a fundamental analogy between fluid motion and heat transfer is addressed that may pave the way to future heat-transfer studies by well-established geometrical methods from laminar-mixing studies.


Author(s):  
N. M. Brown ◽  
F. C. Lai

Numerical simulations have been performed to study the effects of size and slip coefficient of a porous manifold on the thermal stratification in a storage tank. The model is used to predict the development of flow and temperature fields during a charging process. Computations have covered a wide range of the Grashof number (1.8 × 105 < Gr < 1.8 × 108) and Reynolds number (10 ≤ Re ≤ 104), or in terms of the Richardson number, 10−2 < Ri < 105. The results obtained compare favorably well with the experimental data. In addition, the present results have confirmed the effectiveness of porous manifold in the promotion of thermal stratification and provide useful information for the design of such system.


Sign in / Sign up

Export Citation Format

Share Document