Joint energy market design for local integrated energy system service procurement considering demand flexibility

2021 ◽  
Vol 297 ◽  
pp. 117060
Author(s):  
Shaoyun Ge ◽  
Jifeng Li ◽  
Xingtang He ◽  
Hong Liu
2021 ◽  
Vol 245 ◽  
pp. 01044
Author(s):  
Nan Xu ◽  
Bo Zhou ◽  
Jing Nie ◽  
Yan Song ◽  
Zihao Zhao

With the transformation of the energy market from the traditional vertical integrated structure to the interactive competitive structure, the distributed characteristics of the energy system become more and more obvious, and the traditional centralized optimization method is difficult to reveal the interaction between the multi-agent. In this paper, a method based on master-slave game is proposed to optimize the operation of park integrated energy system. Firstly, user load model, user benefit model, operator revenue and cost model are established for park integrated energy system. Secondly, the Stackelberg master-slave game model of interactive optimization operation is established, and the peak cutting compensation price is adjusted. Both of them aim at maximizing their own interests until the game equilibrium is achieved. A distributed cooperative optimization model with one master and many slaves is established and solved by the combination of genetic algorithm and quadratic programming. Finally, an example is given to verify the effectiveness of the proposed method.


Author(s):  
Sai Liu ◽  
Cheng Zhou ◽  
Haomin Guo ◽  
Qingxin Shi ◽  
Tiancheng E. Song ◽  
...  

AbstractAs a key component of an integrated energy system (IES), energy storage can effectively alleviate the problem of the times between energy production and consumption. Exploiting the benefits of energy storage can improve the competitiveness of multi-energy systems. This paper proposes a method for day-ahead operation optimization of a building-level integrated energy system (BIES) considering additional potential benefits of energy storage. Based on the characteristics of peak-shaving and valley-filling of energy storage, and further consideration of the changes in the system’s load and real-time electricity price, a model of additional potential benefits of energy storage is developed. Aiming at the lowest total operating cost, a bi-level optimal operational model for day-ahead operation of BIES is developed. A case analysis of different dispatch strategies verifies that the addition of the proposed battery scheduling strategy improves economic operation. The results demonstrate that the model can exploit energy storage’s potential, further optimize the power output of BIES and reduce the economic cost.


Sign in / Sign up

Export Citation Format

Share Document