Biomechanical analysis of manual material handling movement in healthy weight and obese workers

2019 ◽  
Vol 74 ◽  
pp. 124-133 ◽  
Author(s):  
Philippe Corbeil ◽  
André Plamondon ◽  
Grant Handrigan ◽  
Jasmin Vallée-Marcotte ◽  
Simon Laurendeau ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3877 ◽  
Author(s):  
Paolo Giannini ◽  
Giulia Bassani ◽  
Carlo Alberto Avizzano ◽  
Alessandro Filippeschi

The assessment of risks due to biomechanical overload in manual material handling is nowadays mainly based on observational methods in which an expert rater visually inspects videos of the working activity. Currently available sensing wearable technologies for motion and muscular activity capture enables to advance the risk assessment by providing reliable, repeatable, and objective measures. However, existing solutions do not address either a full body assessment or the inclusion of measures for the evaluation of the effort. This article proposes a novel system for the assessment of biomechanical overload, capable of covering all areas of ISO 11228, that uses a sensor network composed of inertial measurement units (IMU) and electromyography (EMG) sensors. The proposed method is capable of gathering and processing data from three IMU-based motion capture systems and two EMG capture devices. Data are processed to provide both segmentation of the activity and ergonomic risk score according to the methods reported in the ISO 11228 and the TR 12295. The system has been tested on a challenging outdoor scenario such as lift-on/lift-off of containers on a cargo ship. A comparison of the traditional evaluation method and the proposed one shows the consistency of the proposed system, its time effectiveness, and its potential for deeper analyses that include intra-subject and inter-subjects variability as well as a quantitative biomechanical analysis.


Designs ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 39
Author(s):  
Maria Lazzaroni ◽  
Tommaso Poliero ◽  
Matteo Sposito ◽  
Stefano Toxiri ◽  
Darwin G. Caldwell ◽  
...  

The execution of manual material handling activities in the workplace exposes workers to large lumbar loads that increase the risk of musculoskeletal disorders and low back pain. In particular, the redesign of the workplace is making the execution of pulling activities more common, as an alternative to lifting and carrying tasks. The biomechanical analysis of the task revealed a substantial activation of the spinal muscles. This suggests that the user may benefit from the assistance of a back-support exoskeleton that reduces the spinal muscle activity and their contribution to lumbar compression. This work addresses this challenge by exploiting the versatility of an active back-support exoskeleton. A control strategy was specifically designed for assisting pulling that modulates the assistive torques using the forearm muscle activity. These torques are expected to adapt to the user’s assistance needs and the pulled object mass, as forearm muscle activity is considered an indicator of grip strength. We devised laboratory experiments to assess the feasibility and effectiveness of the proposed strategy. We found that, for the majority of the subjects, back muscle activity reductions were associated with the exoskeleton use. Furthermore, subjective measurements reveal advantages in terms of perceived support, comfort, ease of use, and intuitiveness.


Sign in / Sign up

Export Citation Format

Share Document