forearm muscle
Recently Published Documents


TOTAL DOCUMENTS

320
(FIVE YEARS 51)

H-INDEX

39
(FIVE YEARS 2)

Author(s):  
Ilseok Lee ◽  
Jiwon Choi ◽  
Sang Hyeon Kang ◽  
Sangeun Jin

Objective This study evaluated a standing armrest to provide more acceptable ergonomic guidelines that may reduce the cost of standing computer workstations. Background Of the many advantages of standing workstations, there have been no efforts to minimize the biomechanical cost, such as larger wrist extension and greater forearm muscle activity than sitting. Method Sixteen participants were asked to perform a typing task under a combination of the following factors: (1) desk shape (rectangular and concave); (2) desk height (0, +5, -5 cm from 90° elbow flexion); and (3) monitor height (0, −10 cm from the eyes). During the trials, the trunk kinematics, muscle activation levels, and CoP were recorded. Results Both arms were further away from the upper body under the concave and +5 desk height than under the normal condition, but significant decreases in the extensor carpi radialis (8.6%), anterior deltoid (28.8%), and L4 paraspinals (5.5%) were observed. Similarly, the wrist extension angle decreased by 10.5° (42%) under this condition, but the posture required a 2.2° (19%) increase in wrist adduction angle. The CoP irregularity was greater under the concave workstation, indicating more complex motion. Conclusion A higher and concave desk can provide an armrest effect while engaged in a standing workstation by reducing the wrist extension and related muscle activation level, but at the cost of a larger wrist adduction angle. Application Providing a standing armrest (+5 cm height and concave desk) could reduce the stresses on the upper extremities, but a split keyboard should be considered to minimize wrist adduction.


2021 ◽  
Vol 150 (4) ◽  
pp. A289-A289
Author(s):  
Zhiyu Sheng ◽  
Ernesto Bedoy ◽  
Douglas J. Weber ◽  
Brad E. Dicianno ◽  
Kang Kim

Author(s):  
Arinobu Niijima ◽  
Toki Takeda ◽  
Kentaro Tanaka ◽  
Ryosuke Aoki ◽  
Yukio Koike

When beginners play the piano, the activity of the forearm muscles tends to be greater than that of experts because beginners move their fingers with more force than necessary. Reducing forearm muscle activity is important for pianists to prevent fatigue and injury. However, it is difficult for beginners to learn how to do so by themselves. We propose using electrical muscle stimulation (EMS) to teach beginners how to reduce this muscle activity while playing a tremolo: a rapid alternation between two notes. Since experts use wrist rotation efficiently when playing tremolos, we propose an EMS-based support system that applies EMS not to muscles that are relevant to moving the fingers but to the supinator and pronator teres muscles, which are involved in wrist rotation. We conducted a user study with 16 beginners to investigate how the forearm muscle activity on the extensor pollicis longus and digitorum muscles changed when using our EMS-based support system. We divided the participants into two groups: an experimental group who practiced by themselves with EMS and a control group who practiced by themselves without EMS and then practiced with instruction. When practicing by themselves, practicing with EMS was more effective than that without EMS; the activity levels of the extensor pollicis longus and digitorum muscles were significantly lower with EMS, and the participants felt less fatigue when playing tremolos. By comparing the improvement in reducing muscle activity between practicing with EMS and practicing with instruction, there was no significant difference. The results suggest that our EMS-based support system can reduce target muscle activity by applying EMS to other muscles to teach beginners how to move limbs efficiently.


Author(s):  
Michel Marina ◽  
Priscila Torrado ◽  
Raul Bescós

Despite a reduction in the maximal voluntary isometric contraction (MVCisom) observed systematically in intermittent fatigue protocols (IFP), decrements of the median frequency, assessed by surface electromyography (sEMG), has not been consistently verified. This study aimed to determine whether recovery periods of 60 s were too long to induce a reduction in the normalized median frequency (MFEMG) of the flexor digitorum superficialis and carpi radialis muscles. Twenty-one road racing motorcycle riders performed an IFP that simulated the posture and braking gesture on a motorcycle. The MVCisom was reduced by 53% (p < 0.001). A positive and significant relationship (p < 0.005) was found between MFEMG and duration of the fatiguing task when 5 s contractions at 30% MVCisom were interspersed by 5 s recovery in both muscles. In contrast, no relationship was found (p > 0.133) when 10 s contractions at 50% MVC were interspersed by 1 min recovery. Comparative analysis of variance (ANOVA) confirmed a decrement of MFEMG in the IFP at 30% MVCisom including short recovery periods with a duty cycle of 100% (5 s/5 s = 1), whereas no differences were observed in the IFP at 50% MVCisom and longer recovery periods, with a duty cycle of 16%. These findings show that recovery periods during IFP are more relevant than the intensity of MVCisom. Thus, we recommend the use of short recovery periods between 5 and 10 s after submaximal muscle contractions for specific forearm muscle training and testing purposes in motorcycle riders.


Designs ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 39
Author(s):  
Maria Lazzaroni ◽  
Tommaso Poliero ◽  
Matteo Sposito ◽  
Stefano Toxiri ◽  
Darwin G. Caldwell ◽  
...  

The execution of manual material handling activities in the workplace exposes workers to large lumbar loads that increase the risk of musculoskeletal disorders and low back pain. In particular, the redesign of the workplace is making the execution of pulling activities more common, as an alternative to lifting and carrying tasks. The biomechanical analysis of the task revealed a substantial activation of the spinal muscles. This suggests that the user may benefit from the assistance of a back-support exoskeleton that reduces the spinal muscle activity and their contribution to lumbar compression. This work addresses this challenge by exploiting the versatility of an active back-support exoskeleton. A control strategy was specifically designed for assisting pulling that modulates the assistive torques using the forearm muscle activity. These torques are expected to adapt to the user’s assistance needs and the pulled object mass, as forearm muscle activity is considered an indicator of grip strength. We devised laboratory experiments to assess the feasibility and effectiveness of the proposed strategy. We found that, for the majority of the subjects, back muscle activity reductions were associated with the exoskeleton use. Furthermore, subjective measurements reveal advantages in terms of perceived support, comfort, ease of use, and intuitiveness.


2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Andrea D. Rummel ◽  
Sharon M. Swartz ◽  
Richard L. Marsh

Flight is a demanding form of locomotion, requiring fast activation and relaxation in wing muscles to produce the necessary wingbeat frequencies. Bats maintain high body temperatures during flight, but their wing muscles cool under typical environmental conditions. Because distal wing muscles are colder during flight than proximal muscles, we hypothesized that they would be less temperature sensitive to compensate for temperature effects, resulting in proximal–distal differences in temperature sensitivity that match differences in muscle operating temperature. We measured contractile rates across temperatures in the proximal pectoralis muscle and an interosseous in the handwing of Carollia perspicillata , a small neotropical fruit bat, and compared their thermal dependence with that of a forearm muscle measured in a previous study. We found that the contractile properties of the pectoralis were significantly more temperature sensitive than those of the distal muscles. This suggests that cooling of the distal wing muscles imposes a selective pressure on muscle contractile function which has led to shifts in temperature sensitivity. This study is the first to demonstrate differences in temperature sensitivity along the length of a single limb in an endotherm and suggests that temperature variation may be underappreciated as a determinant of locomotor performance in endotherms generally.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Zachary Pellis ◽  
M. Catherine Bandak ◽  
Alexys Bolden ◽  
Matthew Zdilla ◽  
H. Wayne Lambert
Keyword(s):  

Author(s):  
Chantelle Rigozzi ◽  
Jeremy Cox ◽  
Gareth A Vio ◽  
William L Martens ◽  
Philip Poronnik

Elbow tendinopathy injuries are very common in tennis players. One of the commonly accepted theories describing the development of elbow tendinopathy in tennis is based on stiffness of the forearm skeletal muscle units and their repetitive overuse in the forehand stroke. Our objective was to use a novel microcontroller based wearable device to compare the influence of different forehand spin levels (flat, topspin and lob) and ball exit speed on forearm muscle activity in the potential onset of elbow tendinopathy in experienced adult tennis players. Peak normalised extensor carpi radialis (ECR) and flexor carpi radialis (FCR) muscle activity corresponding to each forehand shot and ball exit speed were determined and analysed. For the ECR shots (flat = 121, topspin = 272 and lob = 273) by 8 players, Kruskal-Wallis test (p < 0.001) and Post-Hoc tests revealed a significant difference between the flat and topspin spin levels (p < 0.01) and flat and lob spin levels (p < 0.001). For the FCR shots (flat = 125, topspin = 301 and lob = 303) by 9 players, Kruskal-Wallis test showed no significant difference between the three spin levels. For the corresponding ball speed, the Kruskal-Wallis (p < 0.001) and subsequent Post-Hoc (p < 0.001) showed that flat hits had the significantly highest ball speed followed by topspin then lob accordingly for both muscles included shots. Our results suggest that coaches could consider recommending players to hit forehands with topspin in order to potentially reduce the risk of developing lateral elbow tendinopathy.


Sign in / Sign up

Export Citation Format

Share Document