scholarly journals A non-Newtonian fluid flow model for blood flow through a catheterized artery—Steady flow

2007 ◽  
Vol 31 (9) ◽  
pp. 1847-1864 ◽  
Author(s):  
D.S. Sankar ◽  
K. Hemalatha
2018 ◽  
Vol 9 (7) ◽  
pp. 871-879
Author(s):  
Rajesh Shrivastava ◽  
R. S. Chandel ◽  
Ajay Kumar ◽  
Keerty Shrivastava and Sanjeet Kumar

Author(s):  
Moussa Tembely ◽  
Ali M. AlSumaiti ◽  
Khurshed Rahimov ◽  
Mohamed S. Jouini

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0161377 ◽  
Author(s):  
Akbar Zaman ◽  
Nasir Ali ◽  
M. Sajid ◽  
Tasawar Hayat

2020 ◽  
Vol 43 (5) ◽  
pp. 457-462
Author(s):  
Pramod Kumar Yadav ◽  
Jaikanth Yadav Puchakatla ◽  
Sneha Jaiswal

2000 ◽  
Vol 280 (2) ◽  
pp. 282-288 ◽  
Author(s):  
Alfred I.Y. Tok ◽  
Freddy Y.C. Boey ◽  
Y.C. Lam

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ilyas Khan ◽  
Abid A. Memon ◽  
M. Asif Memon ◽  
Kaleemullah Bhatti ◽  
Gul M. Shaikh ◽  
...  

This article aims to study Newtonian fluid flow modeling and simulation through a rectangular channel embedded in a semicircular cylinder with the range of Reynolds number from 100 to 1500. The fluid is considered as laminar and Newtonian, and the problem is time independent. A numerical procedure of finite element’s least Square technique is implemented through COMSOL multiphysics 5.4. The problem is validated through asymptotic solution governed through the screen boundary condition. The vortex length of the recirculating region formed at the back of the cylinder and orientation of velocity field and pressure will be discussed by three horizontal and four vertical lines along the recirculating region in terms of Reynolds number. It was found that the two vortices of unequal size have appeared and the lengths of these vortices are increased with the increase Reynolds number. Also, the empirical equations through the linear regression procedure were determined for those vortices. The orientation of the velocity magnitude as well as pressure along the lines passing through the center of upper and lower vortices are the same.


Author(s):  
John D. Martin

A computational fluid dynamics (CFD) study has been done comparing pulsatile and non-pulsatile blood flow through the aortic arch and its main branches. The pulsatile flow was to mimic the blood flow due to a beating heart and the non-pulsatile or steady flow was to mimic cardiopulmonary bypass (CPB). The purpose of the study was too narrow in on possible reasons CPB may contribute to the development of atherosclerosis. The main focus of the study was to look at the wall shear stress (WSS) values due to their close association with the development of atherosclerosis. In addition velocity and pressure data were also analyzed. The results of this study showed a stark contrast between the WSS values between the CPB model and the beating heart model. The CPB model did not have any points of oscillating WSS combined with the fact that there were regions of very high and very low constant WSS values in comparison with the beating heart analysis suggests that there may be potential for atherosclerotic development or plaque buildup within the artery. The beating heart model showed a range of WSS values within the aorta that were much lower overall compared with the CPB model.


Sign in / Sign up

Export Citation Format

Share Document