scholarly journals M[x]/(G1, G2)/1 retrial queue under Bernoulli vacation schedules with general repeated attempts and starting failures

2009 ◽  
Vol 33 (7) ◽  
pp. 3186-3196 ◽  
Author(s):  
Jau-Chuan Ke ◽  
Fu-Min Chang
Author(s):  
K. Sathiya Thiyagarajan ◽  
G. Ayyappan

In this chapter we discusses a batch arrival feedback retrial queue with Bernoulli vacation, where the server is subjected to starting failure. Any arriving batch finding the server busy, breakdown or on vacation enters an orbit. Otherwise one customer from the arriving batch enters a service immediately while the rest join the orbit. After the completion of each service, the server either goes for a vacation with probability or may wait for serving the next customer. Repair times, service times and vacation times are assumed to be arbitrarily distributed. The time dependent probability generating functions have been obtained in terms of their Laplace transforms. The steady state analysis and key performance measures of the system are also studied. Finally, some numerical illustrations are presented.


Author(s):  
Arivudainambi D ◽  
Gowsalya Mahalingam

This chapter is concerned with the analysis of a single server retrial queue with two types of service, Bernoulli vacation and feedback. The server provides two types of service i.e., type 1 service with probability??1 and type 2 service with probability ??2. We assume that the arriving customer who finds the server busy upon arrival leaves the service area and are queued in the orbit in accordance with an FCFS discipline and repeats its request for service after some random time. After completion of type 1 or type 2 service the unsatisfied customer can feedback and joins the tail of the retrial queue with probability f or else may depart from the system with probability 1–f. Further the server takes vacation under Bernoulli schedule mechanism, i.e., after each service completion the server takes a vacation with probability q or with probability p waits to serve the next customer. For this queueing model, the steady state distributions of the server state and the number of customers in the orbit are obtained using supplementary variable technique. Finally the average number of customers in the system and average number of customers in the orbit are also obtained.


2016 ◽  
Vol 7 (1) ◽  
pp. 415-429 ◽  
Author(s):  
Charan Jeet Singh ◽  
Madhu Jain ◽  
Binay Kumar

Author(s):  
Dr. Madhu Jain ◽  
Sandeep Kaur

The study of unreliable server retrial bulk queue with multiphase optional service is analyzed by incorporating the features of balking, Bernoulli vacation and Bernoulli feedback. On the occasion when the server is occupied with the service of the customers, an arriving customer finding the long queue, can join the retrial orbit and receives its service later on by making re-attempt. The system is reinforced with multi phase optional service along with essential service and joining customer can opt any one of optional services after getting essential service. Furthermore, the essential/ optional service can be aborted due to abrupt failure of the server. There is an immediate support of multi phase repair facility to take care of the failed server, but sometimes repair may be put on hold by virtue of any unexpected cause. If the service is unsatisfactory, the customer can rejoin the queue as feedback customer. Bernoulli vacation is permitted to the server following the respective busy period. For evaluating the queue size distribution and other system performance metrics, supplementary variable technique (SVT) is used. The approximate solutions for the steady state probabilities and waiting time are suggested using maximum entropy principle (MEP). To verify the outcomes of the model, numerical illustrations and cost analysis have been accomplished.


Author(s):  
Gautam Choudhury ◽  
Lotfi Tadj

This article deals with the steady-state behavior of an MX/G/1 retrial queue with the Bernoulli vacation schedule and unreliable server, under linear retrial policy. Breakdowns can occur randomly at any instant while the server is providing service to the customers. Further, the concept of Bernoulli admission mechanism is introduced. This model generalizes both the classical MX/G/1 retrial queue with unreliable server as well as the MX/G/1 retrial queue with the Bernoulli vacation model. The authors carry out an extensive analysis of this model. Namely, the embedded Markov chain, the stationary distribution of the number of units in the orbit, and the state of the server are studied. Some important performance measures and reliability indices of this model are obtained. Finally, numerical illustrations are provided and sensitivity analyses on some of the system parameters are conducted.


Sign in / Sign up

Export Citation Format

Share Document