scholarly journals A hybrid approach combining DNS and RANS simulations to quantify uncertainties in turbulence modelling

2021 ◽  
Vol 89 ◽  
pp. 885-906
Author(s):  
Laurens J.A. Voet ◽  
Richard Ahlfeld ◽  
Audrey Gaymann ◽  
Sylvain Laizet ◽  
Francesco Montomoli
Energy ◽  
2020 ◽  
Vol 208 ◽  
pp. 118440
Author(s):  
Linlin Tian ◽  
Yilei Song ◽  
Ning Zhao ◽  
Wenzhong Shen ◽  
Chunling Zhu ◽  
...  

Author(s):  
Robert Jaron ◽  
Antoine Moreau ◽  
Sébastien Guérin ◽  
Lars Enghardt ◽  
Timea Lengyel-Kampmann ◽  
...  

Abstract Due to the increasing bypass ratios of modern engines, the fan stage is increasingly becoming the dominant source of engine noise. Accordingly, it is becoming more and more important to develop not only efficient but also quiet fan stages. In this paper the noise emission of a fan for an aero-engine with a bypass ratio of 19 is reduced within a multidisciplinary design optimization (MDO) by means of an hybrid noise prediction method while at the same time optimizing the aerodynamic efficiency. The aerodynamic performance of each configuration in the optimization is evaluated by stationary Reynolds-Averaged Navier-Stokes (RANS) simulations. These stationary flow simulations are also used to extract the aerodynamic excitation sources for the analytical fan noise prediction. The resulting large database of the optimization provides new insights into which extent an MDO can contribute to the design of both quiet and efficient fan stages. In addition to that the hybrid approach of numerical flow solutions and analytical description of the noise sources enables to understand the noise reduction mechanisms. In particular, the influence of rotor blade loading on the aerodynamic efficiency and the noise sources as well as the potential of configurations with a comparatively low number of outlet guide vanes (OGV) is explored. The acoustic results of selected configurations are confirmed by unsteady RANS simulations.


2004 ◽  
Vol 113 (3) ◽  
pp. 321-346
Author(s):  
A. Venetsanos ◽  
J. Bartzis ◽  
S. Andronopoulos

VASA ◽  
2016 ◽  
Vol 45 (5) ◽  
pp. 417-422 ◽  
Author(s):  
Anouk Grandjean ◽  
Katia Iglesias ◽  
Céline Dubuis ◽  
Sébastien Déglise ◽  
Jean-Marc Corpataux ◽  
...  

Abstract. Background: Multilevel peripheral arterial disease is frequently observed in patients with intermittent claudication or critical limb ischemia. This report evaluates the efficacy of one-stage hybrid revascularization in patients with multilevel arterial peripheral disease. Patients and methods: A retrospective analysis of a prospective database included all consecutive patients treated by a hybrid approach for a multilevel arterial peripheral disease. The primary outcome was the patency rate at 6 months and 1 year. Secondary outcomes were early and midterm complication rate, limb salvage and mortality rate. Statistical analysis, including a Kaplan-Meier estimate and univariate and multivariate Cox regression analyses were carried out with the primary, primary assisted and secondary patency, comparing the impact of various risk factors in pre- and post-operative treatments. Results: 64 patients were included in the study, with a mean follow-up time of 428 days (range: 4 − 1140). The technical success rate was 100 %. The primary, primary assisted and secondary patency rates at 1 year were 39 %, 66 % and 81 %, respectively. The limb-salvage rate was 94 %. The early mortality rate was 3.1 %. Early and midterm complication rates were 15.4 % and 6.4 %, respectively. The early mortality rate was 3.1 %. Conclusions: The hybrid approach is a major alternative in the treatment of peripheral arterial disease in multilevel disease and comorbid patients, with low complication and mortality rates and a high limb-salvage rate.


2011 ◽  
Vol 14 (1) ◽  
pp. 67 ◽  
Author(s):  
Ireneusz Haponiuk ◽  
Maciej Chojnicki ◽  
Radosaw Jaworski ◽  
Jacek Juciski ◽  
Mariusz Steffek ◽  
...  

There are several strategies of surgical approach for the repair of multiple muscular ventricular septal defects (mVSDs), but none leads to a fully predictable, satisfactory therapeutic outcome in infants. We followed a concept of treating multiple mVSDs consisting of a hybrid approach based on intraoperative perventricular implantation of occluding devices. In this report, we describe a 2-step procedure consisting of a final hybrid approach for multiple mVSDs in the infant following initial coarctation repair with pulmonary artery banding in the newborn. At 7 months, sternotomy and debanding were performed, the right ventricle was punctured under transesophageal echocardiographic guidance, and the 8-mm device was implanted into the septal defect. Color Doppler echocardiography results showed complete closure of all VSDs by 11 months after surgery, probably via a mechanism of a localized inflammatory response reaction, ventricular septum growth, and implant endothelization.


Sign in / Sign up

Export Citation Format

Share Document