Unilateral spatial neglect: Relation to rehabilitation outcomes in patients with right hemisphere stroke

2005 ◽  
Vol 86 (4) ◽  
pp. 763-767 ◽  
Author(s):  
Robert Gillen ◽  
Howard Tennen ◽  
Tara McKee
2020 ◽  
Vol 74 (4_Supplement_1) ◽  
pp. 7411500069p1
Author(s):  
Gabrielle Escalante ◽  
Kelsey Watters ◽  
Leora Cherney ◽  
Sameer Ashaie

Stroke ◽  
2021 ◽  
Author(s):  
Olga Boukrina ◽  
Mateusz Kowalczyk ◽  
Yury Koush ◽  
Yekyung Kong ◽  
A.M. Barrett

Background and Purpose: Delirium, an acute reduction in cognitive functioning, hinders stroke recovery and contributes to cognitive decline. Right-hemisphere stroke is linked with higher delirium incidence, likely, due to the prevalence of spatial neglect (SN), a right-brain disorder of spatial processing. This study tested if symptoms of delirium and SN after right-hemisphere stroke are associated with abnormal function of the right-dominant neural networks specialized for maintaining attention, orientation, and arousal. Methods: Twenty-nine participants with right-hemisphere ischemic stroke undergoing acute rehabilitation completed delirium and SN assessments and functional neuroimaging scans. Whole-brain functional connectivity of 4 right-hemisphere seed regions in the cortical-subcortical arousal and attention networks was assessed for its relationship to validated SN and delirium severity measures. Results: Of 29 patients, 6 (21%) met the diagnostic criteria for delirium and 16 (55%) for SN. Decreased connectivity of the right basal forebrain to brain stem and basal ganglia predicted more severe SN. Increased connectivity of the arousal and attention network regions with the parietal, frontal, and temporal structures in the unaffected hemisphere was also found in more severe delirium and SN. Conclusions: Delirium and SN are associated with decreased arousal network activity and an imbalance of cortico-subcortical hemispheric connectivity. Better understanding of neural correlates of poststroke delirium and SN will lead to improved neuroscience-based treatment development for these disorders.


2019 ◽  
Vol 25 (05) ◽  
pp. 490-500
Author(s):  
Christiane E. Whitehouse ◽  
Janet Green ◽  
Sarah M. Giles ◽  
Rosanna Rahman ◽  
Jamesie Coolican ◽  
...  

Objectives: Visual-spatial neglect is a common attentional disorder after right-hemisphere stroke and is associated with poor rehabilitation outcomes. The presence of neglect symptoms has been reported to vary across personal, peripersonal, and extrapersonal space. Currently, no measure is available to assess neglect severity equally across these spatial regions and may be missing subsets of symptoms or patients with neglect entirely. We sought to provide initial construct validity for a novel assessment tool that measures neglect symptoms equally for these spatial regions: the Halifax Visual Scanning Test (HVST). Methods: In Study I, the HVST was compared to conventional measures of neglect and functional outcome scores (wheelchair navigation) in 15 stroke inpatients and 14 healthy controls. In Study II, 19 additional controls were combined with the control data from Study I to establish cutoffs for impairment. Patterns of neglect in the stroke group were examined. Results: In Study I, performance on all HVST subtests were correlated with the majority of conventional subtests and wheelchair navigation outcomes. In Study II, neglect-related deficits in visual scanning showed dissociations across spatial regions. Four inpatients exhibited symptoms of neglect on the HVST that were not detected on conventional measures, one of which showed symptoms in personal and extrapersonal space exclusively. Conclusions: The HVST appears a useful measure of neglect symptoms in different spatial regions that may not be detected with conventional measures and that correlates with functional wheelchair performance. Preliminary control data are presented and further research to add to this normative database appears warranted. (JINS, 2019, 25, 490–500)


2021 ◽  
Author(s):  
Sungmin Cho ◽  
Won-Seok Kim ◽  
Jihong Park ◽  
Seung Hyun Lee ◽  
Jongseung Lee ◽  
...  

Unilateral spatial neglect (USN) is common after stroke and associated with poor functional recovery. Prism adaptation (PA) is one of the most supported modality able to ameliorate USN but underapplied due to several issues. Using immersive virtual reality and depth-sensing camera, we developed the virtual prism adaptation therapy (VPAT) to overcome the limitations in conventional PA. In this study, we investigated whether VPAT can induce behavioral adaptations and which cortical area is most significantly activated. Fourteen healthy subjects participated in this study. The experiment consisted of four sequential phases (pre-VAPT, VPAT-10°, VPAT-20°, and post-VPAT) with functional near-infrared spectroscopy recordings. Each phase consisted of alternating target pointing and resting (or clicking) blocks. To find out the most significantly activated area during pointing in different phases (VPAT-10°, VPAT-20°, and Post-VPAT) in contrast to pointing during the pre-VPAT phase, we analyzed changes in oxyhemoglobin concentration during pointing. The pointing errors of the virtual hand deviated to the right-side during early pointing blocks in the VPAT-10°and VPAT-20°phases. There was a left-side deviation of the real hand to the target in the post-VPAT phase. The most significantly activated channels were all located in the right hemisphere, and possible corresponding cortical areas included the dorsolateral prefrontal cortex and frontal eye field. In conclusion, VPAT may induce behavioral adaptation with modulation of the dorsal attentional network. Future clinical trials using multiple sessions of a high degree of rightward deviation VPAT over a more extended period are required in stroke patients with unilateral spatial neglect.


1992 ◽  
Vol 5 (4) ◽  
pp. 247-250 ◽  
Author(s):  
J. C. Marshall ◽  
P. W. Halligan

A case of severe aphasia after right hemisphere stroke, confirmed by CT, in an unambiguously dextral patient is reported. The patient showed no limb apraxia, and performed well on a test of “closure” (Mooney faces). Extensive testing revealed no signs of visuo-spatial neglect. We conclude that “pure” crossed aphasia can occur in the absence of symptoms normally associated with right hemisphere lesions.


Author(s):  
Barbara Spanò ◽  
Davide Nardo ◽  
Giovanni Giulietti ◽  
Alessandro Matano ◽  
Ilenia Salsano ◽  
...  

AbstractA typical consequence of stroke in the right hemisphere is unilateral spatial neglect. Distinct forms of neglect have been described, such as space-based (egocentric) and object-based (allocentric) neglect. However, the relationship between these two forms of neglect is still far from being understood, as well as their neural substrates. Here, we further explore this issue by using voxel lesion symptoms mapping (VLSM) analyses on a large sample of early subacute right-stroke patients assessed with the Apples Cancellation Test. This is a sensitive test that simultaneously measures both egocentric and allocentric neglect. Behaviourally, we found no correlation between egocentric and allocentric performance, indicating independent mechanisms supporting the two forms of neglect. This was confirmed by the VLSM analysis that pointed out a link between a damage in the superior longitudinal fasciculus and left egocentric neglect. By contrast, no association was found between brain damage and left allocentric neglect. These results indicate a higher probability to observe egocentric neglect as a consequence of white matter damages in the superior longitudinal fasciculus, while allocentric neglect appears more “globally” related to the whole lesion map. Overall, these findings on early subacute right-stroke patients highlight the role played by white matter integrity in sustaining attention-related operations within an egocentric frame of reference.


1994 ◽  
Vol 1 ◽  
pp. 255
Author(s):  
T. Kashiwagi ◽  
A. Kashiwagi ◽  
T. Nishikawa ◽  
H. Tanabe ◽  
J. Okuda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document