Convergence analysis of the multiscale method for a class of convection–diffusion equations with highly oscillating coefficients

2009 ◽  
Vol 59 (7) ◽  
pp. 1549-1567 ◽  
Author(s):  
Weibing Deng ◽  
Xulai Yun ◽  
Chunhong Xie
2019 ◽  
Vol 31 (01) ◽  
pp. 2050017
Author(s):  
Liang Wang ◽  
Xuhui Meng ◽  
Hao-Chi Wu ◽  
Tian-Hu Wang ◽  
Gui Lu

The discrete effect on the boundary condition has been a fundamental topic for the lattice Boltzmann method (LBM) in simulating heat and mass transfer problems. In previous works based on the anti-bounce-back (ABB) boundary condition for convection-diffusion equations (CDEs), it is indicated that the discrete effect cannot be commonly removed in the Bhatnagar–Gross–Krook (BGK) model except for a special value of relaxation time. Targeting this point in this paper, we still proceed within the framework of BGK model for two-dimensional CDEs, and analyze the discrete effect on a non-halfway single-node boundary condition which incorporates the effect of the distance ratio. By analyzing an unidirectional diffusion problem with a parabolic distribution, the theoretical derivations with three different discrete velocity models show that the numerical slip is a combined function of the relaxation time and the distance ratio. Different from previous works, we definitely find that the relaxation time can be freely adjusted by the distance ratio in a proper range to eliminate the numerical slip. Some numerical simulations are carried out to validate the theoretical derivations, and the numerical results for the cases of straight and curved boundaries confirm our theoretical analysis. Finally, it should be noted that the present analysis can be extended from the BGK model to other lattice Boltzmann (LB) collision models for CDEs, which can broaden the parameter range of the relaxation time to approach 0.5.


2015 ◽  
Vol 18 (5) ◽  
pp. 1313-1335 ◽  
Author(s):  
Xiaoqiang Yue ◽  
Shi Shu ◽  
Xiao wen Xu ◽  
Zhiyang Zhou

AbstractThe paper aims to develop an effective preconditioner and conduct the convergence analysis of the corresponding preconditioned GMRES for the solution of discrete problems originating from multi-group radiation diffusion equations. We firstly investigate the performances of the most widely used preconditioners (ILU(k) and AMG) and their combinations (Bco and Bco), and provide drawbacks on their feasibilities. Secondly, we reveal the underlying complementarity of ILU(k) and AMG by analyzing the features suitable for AMG using more detailed measurements on multiscale nature of matrices and the effect of ILU(k) on multiscale nature. Moreover, we present an adaptive combined preconditioner Bcoα involving an improved ILU(0) along with its convergence constraints. Numerical results demonstrate that Bcoα-GMRES holds the best robustness and efficiency. At last, we analyze the convergence of GMRES with combined preconditioning which not only provides a persuasive support for our proposed algorithms, but also updates the existing estimation theory on condition numbers of combined preconditioned systems.


Sign in / Sign up

Export Citation Format

Share Document