adjoint methods
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 23)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 2090 (1) ◽  
pp. 012139
Author(s):  
OA Shishkina ◽  
I M Indrupskiy

Abstract Inverse problem solution is an integral part of data interpretation for well testing in petroleum reservoirs. In case of two-phase well tests with water injection, forward problem is based on the multiphase flow model in porous media and solved numerically. The inverse problem is based on a misfit or likelihood objective function. Adjoint methods have proved robust and efficient for gradient calculation of the objective function in this type of problems. However, if time-lapse electrical resistivity measurements during the well test are included in the objective function, both the forward and inverse problems become multiphysical, and straightforward application of the adjoint method is problematic. In this paper we present a novel adjoint algorithm for the inverse problems considered. It takes into account the structure of cross dependencies between flow and electrical equations and variables, as well as specifics of the equations (mixed parabolic-hyperbolic for flow and elliptic for electricity), numerical discretizations and grids, and measurements in the inverse problem. Decomposition is proposed for the adjoint problem which makes possible step-wise solution of the electric adjoint equations, like in the forward problem, after which a cross-term is computed and added to the right-hand side of the flow adjoint equations at this timestep. The overall procedure provides accurate gradient calculation for the multiphysical objective function while preserving robustness and efficiency of the adjoint methods. Example cases of the adjoint gradient calculation are presented and compared to straightforward difference-based gradient calculation in terms of accuracy and efficiency.


2021 ◽  
Author(s):  
Maria Koroni ◽  
Andreas Fichtner

<p>This study is a continuation of our efforts to connect adjoint methods and full-waveform inversion to common beamforming techniques, widely used and developed for signal enhancement. Our approach is focusing on seismic waves traveling in the Earth's mantle, which are phases commonly used to image internal boundaries, being however quite difficult to observe in real data. The main goal is to accentuate precursor waves arriving in well-known times before some major phase. These waves generate from interactions with global discontinuities in the mantle, thus being the most sensitive seismic phases and therefore most suitable for better understanding of discontinuity seismic structure. </p><p>Our work is based on spectral-element wave propagation which allows us to compute exact synthetic waveforms and adjoint methods for the calculation of sensitivity kernels. These tools are the core of full-waveform inversion and by our efforts we aim to incorporate more parts of the waveform in such inversion schemes. We have shown that targeted stacking of good quality waveforms arriving from various directions highlights the weak precursor waves. It additionally makes their traveltime finite frequency sensitivity prominent. This shows that we can benefit from using these techniques and exploit rather difficult parts of the seismogram.  It was also shown that wave interference is not easily avoided, but coherent phases arriving before the main phase also stack well and show on the sensitivity kernels. This does not hamper the evaluation of waveforms, as in a misfit measurement process one can exploit more phases on the body wave parts of seismograms.</p><p>In this study, we go a step forward and present recent developments of the approach relating to the effects of noise and a real data experiment. Realistic noise is added to synthetic waveforms in order to assess the methodology in a more pragmatic scenario. The addition of noise shows that stacking of coherent seismic phases is still possible and the sensitivity kernels of their traveltimes are not largely distorted, the precursor waves contribute sufficiently to their traveltime finite-frequency sensitivity kernels.<br>Using a well-located seismic array, we apply the method to real data and try to examine the possibilities of using non-ideal waveforms to perform imaging of the mantle discontinuity structure on the specific areas. In order to make the most out of the dense array configuration, we try subgroups of receivers for the targeted stacking and by moving along the array we aim at creating a cluster of stacks. The main idea is to use the subgroups as single receivers and create an evaluation of seismic discontinuity structure using information from each stack belonging to a subgroup. <br>Ideally, we aim at improving the tomographic images of discontinuities of selected regions by exploiting weaker seismic waves, which are nonetheless very informative.</p>


2020 ◽  
Author(s):  
Yujiang Xie ◽  
Catherine A. Rychert ◽  
Nicholas Harmon ◽  
Qinya Liu ◽  
Dirk Gajewski

Author(s):  
Nicolas Lachenmaier ◽  
Daniel Baumgärtner ◽  
Heinz-Peter Schiffer ◽  
Johannes Kech

Abstract The higher the efficiency of a turbocharger’s radial turbine, the lower is the necessary pressure ratio to deliver a specified power to the compressor. This, in turn, reduces the fuel consumption of the internal combustion engine as a lower pressure upstream of the turbine increases the obtained charge-cycle work. In this paper, two components of a nozzled radial turbine system are redesigned: Both the volute upstream and the 90°-bend downstream of the turbine wheel will be improved. To reduce pressure drops, a gradient-based shape optimization workflow based on adjoint methods is applied. The scheme works in an iterative manner, i.e. after running a primal and an adjoint simulation to gather shape sensitivities, the geometry is deformed and the next iteration is started. A steepest descent approach is used to guide the optimization process. As parametrization strategy the Vertex Morphing Method is used to explore design potential, while maintaining smooth surfaces. Both the volute and the bend are optimized successfully leading to an efficiency increase of the turbine system of up to 3%, depending on the load condition.


Sign in / Sign up

Export Citation Format

Share Document