Numerical solution of nonlinear 2D optimal control problems generated by Atangana-Riemann-Liouville fractal-fractional derivative

2020 ◽  
Vol 150 ◽  
pp. 507-518 ◽  
Author(s):  
M.H. Heydari
2018 ◽  
Vol 36 (3) ◽  
pp. 713-727 ◽  
Author(s):  
E Ziaei ◽  
M H Farahi

Abstract In this paper, a class of time-delay fractional optimal control problems (TDFOCPs) is studied. Delays may appear in state or control (or both) functions. By an embedding process and using conformable fractional derivative as a new definition of fractional derivative and integral, the class of admissible pair (state, control) is replaced by a class of positive Radon measures. The optimization problem found in measure space is then approximated by a linear programming problem (LPP). The optimal measure which is representing optimal pair is approximated by the solution of a LPP. In this paper, we have shown that the embedding method (embedding the admissible set into a subset of measures), successfully can be applied to non-linear TDFOCPs. The usefulness of the used idea in this paper is that the method is not iterative, quite straightforward and can be applied to non-linear dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document