Parametric study of geometrical effects on the degree of bending (DoB) in offshore tubular K-joints under out-of-plane bending loads

2016 ◽  
Vol 58 ◽  
pp. 1-10 ◽  
Author(s):  
Hamid Ahmadi ◽  
Shadi Asoodeh
1998 ◽  
Vol 33 (5) ◽  
pp. 385-394 ◽  
Author(s):  
C T Kang ◽  
D G Moffat ◽  
J Mistry

The effects of chord axial compression on the ultimate strength of a double-tee (DT) tubular joint subjected to brace out-of-plane bending have been studied both experimentally and numerically. The results from four experimental tests with different levels of chord compression are presented, together with the results of a parametric study using non-linear finite element procedures. The results are compared with the American Petroleum Institute's design rules for DT joints subjected to combined brace and chord loading.


2007 ◽  
Vol 129 (3) ◽  
pp. 177-189 ◽  
Author(s):  
David Pecknold ◽  
Peter Marshall ◽  
Justin Bucknell

The development of the new API RP2A (22nd edition) parametric static strength prediction equations for planar circular hollow section tubular joints is described. Prediction equations are presented for brace axial, brace in-plane bending, and brace out-of-plane bending loads. The prediction equations are based on screened test databases, augmented, and extended by an extensive new series of validated nonlinear finite element simulations for nonoverlapping K joints, double tee (DT/X) joints, and T joints. The increased reliability (reduced scatter) provided by the new static strength formulation was used to justify a reduction of the load factor of safety to 1.6 from the previous value of 1.7.


Sign in / Sign up

Export Citation Format

Share Document