A probability distribution model for SCFs in internally ring-stiffened tubular KT-joints of offshore structures subjected to out-of-plane bending loads

2016 ◽  
Vol 116 ◽  
pp. 184-199 ◽  
Author(s):  
Hamid Ahmadi
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Hamid Ahmadi ◽  
Amirreza Ghaffari

Fatigue life of tubular joints in offshore structures is significantly influenced by the degree of bending (DoB). The DoB exhibits considerable scatter calling for greater emphasis in accurate determination of its governing probability distribution which is a key input for the fatigue reliability analysis of a tubular joint. Although the tubular X-joints are commonly found in offshore jacket structures, as far as the authors are aware, no comprehensive research has been carried out on the probability distribution of the DoB in tubular X-joints. In the present paper, results of parametric equations available for the calculation of the DoB have been used to develop probability distribution models for the DoB in the chord member of tubular X-joints subjected to four types of bending loads. Based on a parametric study, a set of samples was prepared and density histograms were generated for these samples using Freedman-Diaconis method. Twelve different probability density functions (PDFs) were fitted to these histograms. In each case, Kolmogorov-Smirnov test was used to evaluate the goodness of fit. Finally, after substituting the values of estimated parameters for each distribution, a set of fully defined PDFs have been proposed for the DoB in tubular X-joints subjected to bending loads.


Author(s):  
Amir H. Izadparast ◽  
John M. Niedzwecki

For the design of offshore structures it is important to accurately predict wave runup and thus avoid topside inundation and minimize the wave impact on the underside of the deck structure. In this paper a three-parameter probability distribution function for nonlinear wave run-up amplitudes is presented. It builds upon previous studies and utilizes the quadratic transformation of incident waves. The parameters of this probability distribution are estimated from the data using method of L-moments and the explicit relation between the parameters and L-moments is presented. The L-moments themselves are linear combinations of ordered data and consequently they are less influenced by outliers and unexpectedly large values. Earlier theoretical models, based on simplified diffraction theory, are presented and compared with the L-moments model. A three-parameter Weibull distribution model that utilizes the method of L-moments is derived and discussed. Run-up measurements from a mini-TLP model test program are used as the basis for comparison of the three methods. This study demonstrates that the new empirical model and Weibull distribution are more robust in representing the probability distribution of nonlinear runup amplitudes especially for the weakly nonlinear cases with moderate steepness. Although the new empirical model and Weibull distribution have different probability structure their estimates are found to be fairly close.


2007 ◽  
Vol 129 (3) ◽  
pp. 177-189 ◽  
Author(s):  
David Pecknold ◽  
Peter Marshall ◽  
Justin Bucknell

The development of the new API RP2A (22nd edition) parametric static strength prediction equations for planar circular hollow section tubular joints is described. Prediction equations are presented for brace axial, brace in-plane bending, and brace out-of-plane bending loads. The prediction equations are based on screened test databases, augmented, and extended by an extensive new series of validated nonlinear finite element simulations for nonoverlapping K joints, double tee (DT/X) joints, and T joints. The increased reliability (reduced scatter) provided by the new static strength formulation was used to justify a reduction of the load factor of safety to 1.6 from the previous value of 1.7.


Sign in / Sign up

Export Citation Format

Share Document