Thermodynamic evaluation of liquid metals as heat transfer fluids in concentrated solar power plants

2013 ◽  
Vol 60 (1-2) ◽  
pp. 295-302 ◽  
Author(s):  
J. Pacio ◽  
Cs. Singer ◽  
Th. Wetzel ◽  
R. Uhlig
Author(s):  
Iñigo Ortega ◽  
Javier Rodríguez-Aseguinolaza ◽  
Antoni Gil ◽  
Abdessamad Faik ◽  
Bruno D’Aguanno

Slag is one of the main waste materials of the iron and steel manufacturing. Every year about 20 million tons of slag are generated in the United States and 43.5 million tons in Europe. The revalorization of this by-product as heat storage material in thermal energy storage systems would have numerous advantages which include: the possibility to extend the working temperature range up to 1000 °C, the reduction of the system cost and, at the same time, the decrease of the quantity of waste in the iron and steel industry. In this paper, two different electric arc furnace slags from two companies located in the Basque Country (Spain) are studied. Their thermal stability and compatibility in direct contact with the most common heat transfer fluids used in the concentrated solar power plants are analyzed. The experiments have been designed in order to cover a wide temperature range up to the maximum operation temperature of the future generation of concentrated solar power plants (1000 °C). In particular, three different fluids have been studied: synthetic oil (Syltherm 800®) at 400 °C, molten salt (Solar Salt) at 500 °C and air at 1000 °C. In addition, a complete characterization of the studied slags and fluids used in the experiments is presented showing the behavior of these materials after 500 hour laboratory-tests.


Green ◽  
2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Joseph G. Cordaro

AbstractMolten salts have been widely considered as the leading candidate heat transfer fluids (HTF) used in high temperature, concentrated solar power plants. Specifically, nitrate and nitrite based salts have been investigated as a HTF and even deployed in pilot plants generating up to 19.9 MW of electricity at operating temperatures above 500 °C. New plant designs requiring higher operating temperatures for better efficiencies are pushing the stability limit of HTF. This paper presents an overview of the thermophysical properties of nitrate and nitrite salts and discusses thermodynamic and kinetic stability limitations as they relate to concentrated solar power generation.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Andrzej Bielecki ◽  
Sebastian Ernst ◽  
Wioletta Skrodzka ◽  
Igor Wojnicki

Concentrated solar power plants belong to the category of clean sources of renewable energy. The paper discusses the possibilities for the use of molten salts as storage in modern CSP plants. Besides increasing efficiency, it may also shift their area of application: thanks to increased controllability, they may now be used not only to cover baseload but also as more agile, dispatchable generators. Both technological and economic aspects are presented, with focus on the European energy sector and EU legislation. General characteristics for CSP plants, especially with molten salt storage, are discussed. Perspectives for their development, first of all in economic aspects, are considered.


2018 ◽  
Vol 91 ◽  
pp. 802-811 ◽  
Author(s):  
Carlos M. Fernández-Peruchena ◽  
Frank Vignola ◽  
Martín Gastón ◽  
Vicente Lara-Fanego ◽  
Lourdes Ramírez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document