A dynamic compact thermal model for data center analysis and control using the zonal method and artificial neural networks

2014 ◽  
Vol 62 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Zhihang Song ◽  
Bruce T. Murray ◽  
Bahgat Sammakia
2008 ◽  
Vol 17 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Abdoul-Fatah Kanta ◽  
Ghislain Montavon ◽  
Michel Vardelle ◽  
Marie-Pierre Planche ◽  
Christopher C. Berndt ◽  
...  

2017 ◽  
Vol 107 (07-08) ◽  
pp. 536-540
Author(s):  
S. J. Pieczona ◽  
F. Muratore ◽  
M. F. Prof. Zäh

Zur Dynamiksteigerung von Scannersystemen werden verschiedene Arten von Modellierungs- und Regelungsmethoden in der Forschung genutzt. Jedoch sind Nichtlinearitäten, welche das Systemverhalten nachweisbar beeinflussen, in aller Regel nicht Teil der Untersuchung. Mit der Anwendung künstlicher neuronaler Netzwerke (KNN) wird das gesamte dynamische Systemverhalten sowohl für ein geregeltes als auch für ein ungeregeltes Scannersystem abgebildet. So wird geklärt, ob sich diese Art der Modellbildung für eine zukünftige Dynamiksteigerung eignet.   To enhance the dynamics of a scanner system, different methods of modelling and control are utilized. Nonlinearities, which have a certain impact on the system’s behavior, are generally ignored, though. By applying artificial neural networks, the overall dynamics of a controlled and an uncontrolled scanner could be represented. Thus, it will be clarified whether this kind of modelling is appropriate for a future dynamic enhancement.


Author(s):  
Pankaj Dadheech ◽  
Ankit Kumar ◽  
Vijander Singh ◽  
Linesh Raja ◽  
Ramesh C. Poonia

The networks acquire an altered move towards the difficulty solving skills rather than that of conventional computers. Artificial neural networks are comparatively crude electronic designs based on the neural structure of the brain. The chapter describes two different types of approaches to training, supervised and unsupervised, as well as the real-time applications of artificial neural networks. Based on the character of the application and the power of the internal data patterns we can normally foresee a network to train quite well. ANNs offers an analytical solution to conventional techniques that are often restricted by severe presumptions of normality, linearity, variable independence, etc. The chapter describes the necessities of items required for pest management through pheromones such as different types of pest are explained and also focused on use of pest control pheromones.


1995 ◽  
Vol 31 (6) ◽  
pp. 1484-1491 ◽  
Author(s):  
G.E. Cook ◽  
R.J. Barnett ◽  
K. Andersen ◽  
A.M. Strauss

1995 ◽  
Vol 387 ◽  
Author(s):  
Chi Yung Fu ◽  
Loren Petrich ◽  
Benjamin Law

AbstractThe cost of a fabrication line, such as one in a semiconductor house, has increased dramatically over the years, and it is possibly already past the point that some new start-up company can have sufficient capital to build a new fabrication line. Such capital-intensive manufacturing needs better utilization of resources and management of equipment to maximize its productivity. In order to maximize the return from such a capital-intensive manufacturing line, we need to work on the following: 1) increasing the yield, 2) enhancing the flexibility of the fabrication line, 3) improving quality, and finally 4) minimizing the down time of the processing equipment. Because of the significant advances now made in the fields of artificial neural networks, fuzzy logic, machine learning and genetic algorithms, we advocate the use of these new tools in manufacturing. We term the applications to manufacturing of these and other such tools that mimic human intelligence neural manufacturing. This paper describes the effort at the Lawrence Livermore National Laboratory (LLNL) [1] to use artificial neural networks to address certain semiconductor process modeling, monitoring and control questions.


Sign in / Sign up

Export Citation Format

Share Document