scholarly journals Numerical investigation of effect of fill ratio and inclination angle on a thermosiphon heat pipe thermal performance

2016 ◽  
Vol 108 ◽  
pp. 1055-1065 ◽  
Author(s):  
Ahmed A. Alammar ◽  
Raya K. Al-Dadah ◽  
Saad M. Mahmoud
Author(s):  
Pramod R. Pachghare ◽  
Ashish M. Mahalle

The closed loop pulsating heat pipe (CLPHP) is a passive two-phase heat transfer device, patented by Akachi (1990). Due to its excellent features, PHP has been considered as one of the promising technologies for electronic cooling, heat exchanger, etc. This paper presents an experimental study shows the effect of inclination angle on the thermal performance of CLPHP, which consist of 10 turns of copper tubes having inner and outer diameter 2 mm and 3.6 mm respectively. The equal lengths of evaporator, condenser and adiabatic sections are 50 mm each. Different working fluids are used as R-134a, Methanol and Water. For all experimentations, an optimum filling ratio was maintained 50% by volume. The thermal performance have been investigated with different inclination angles (viz. 0°, 20°, 40°, 60° and 90°) at various heat input from 5 to 50W in the steps of 5W. The thermal resistance (which is inversely proportional to thermal performance) of CLPHP at various heat input are plotted for different working fluids. The result shows that, the thermal resistance decreases as heat input increases. But at low heat input i.e. upto 25W, the thermal resistance decreases rapidly and the PHP performance is more sensitive to the inclination angle whereas high heat input i.e. above 25W, the thermal resistance decreases smoothly and less independent to the inclination angle. In all inclination angles, vertical bottom heat position (at 90°) of CLPHP gives best thermal performance due to presence of gravity force. At all inclination angles, the working fluid R-134a show best thermal performance followed by methanol and water.


Author(s):  
Mehdi Taslimifar ◽  
Maziar Mohammadi ◽  
Mohammad Hassan Saidi ◽  
Hossein Afshin ◽  
Mohammad Behshad Shafii ◽  
...  

In the present research an experimental investigation is performed to explore the effects of working fluid, heat input, ferrofluid concentration, magnets location, and inclination angle on the thermal performance of an Open Loop Pulsating Heat Pipe (OLPHP). Obtained results show that using ferrofluid can improve the thermal performance and applying a magnetic field on the water based ferrofluid decreases the thermal resistance. It shows that at an inclination angle of the OLPHP to be zero, the thermal performance of the present OLPHP reduces. Best heat transfer capability was achieved at 67.5 degree relative to horizontal axis for all of working fluids. Variation of the magnets location leads to a different thermal resistance in the OLPHP charged with ferrofluid.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 231
Author(s):  
Alaa A. B. Temimy ◽  
Adnan A. Abdulrasool ◽  
F. A. Hamad

The aim of this study was to investigate the effect of inserting a new internal tube packing (TP) on the thermal performance of a thermosyphon heat pipe (THP). The THP pipe was made from copper with an inner diameter of 17.4 mm and length of 600 mm. The new internal tube packing (TP) had a central copper disc with two copper tubes soldered onto both sides to transport vapor and condensate. The upper tube or riser had an inner diameter of 8.3 mm and was 300 mm long; it was connected to a hole in the disc from the upper side to transport the steam to the condenser section. The lower tube or downcomer had an inner diameter of 5 mm, was 225 mm long and was connected to the lower side of the disc to collect the condensate and transport it to the evaporator. The TP was inserted inside the THP to complete the design of the improved heat pipe (TPTHP). Experimental results showed that the TPTHP reduces the transit time from 16 to 11 min and the thermal resistance by 17–62% based on the input power and depending on the conditions of the THP. The results also showed that the inclination angle and filling ratio have no effect on the thermal resistance of the TPTHP.


Sign in / Sign up

Export Citation Format

Share Document