wick structure
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 23)

H-INDEX

18
(FIVE YEARS 4)

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2821
Author(s):  
Yanhui Zhang ◽  
Zhengang Zhao ◽  
Chuan Luo ◽  
Dacheng Zhang

The thermal efficiency limitation of the Flat-plate Micro Heat Pipe (FMHP) is a major challenge in the development of the FMHP, where the effect of wick structure and wettability on its thermal performance is studied to improve the thermal efficiency of the FMHP. In this work, a copper spiral woven mesh and copper foam Composite Wick FMHP (CW-FMHP) is designed based on the conventional Copper Foam Wick FMHP (CFW-FMHP), and its thermal performance is analyzed regarding the wick structure and internal gas–liquid two-phase flow characteristics. An oxidized copper spiral woven mesh and copper foam Composite Wick FMHP (OCW-FMHP) has been further developed through the modification of composite wick wettability. The performance tests are carried out with the thermal transfer characteristics of CW-FMHP, OCW-FMHP, and CFW-FMHP under different filling rates and different thermal powers. The experimental results show that the thermal transfer performance of CW-FMHP reaches the optimal under a liquid filling rate of 150%, where the maximum thermal power is 15.7 W, 35.3% higher than that of the CFW-FMHP under the same filling rate. Moreover, the dynamic response characteristics of the CW-FMHP are significantly improved. The thermal resistance of the CW-FMHP is 0.48 ∘C/W under the filling rate of 150% at the thermal power of 10 W with a reduction of 9.4% compared to the CFW-FMHP under the same condition. Furthermore, the optimal filling rate for OCW-FMHP is lower compared with the CW-FMHP. The maximum thermal power of OCW-FMHP increases to 17.8 W while the thermal resistance reduces to 0.34 ∘C/W under the liquid filling rate of 140%. This implies that the composite wick structure designed in this work can improve the thermal transfer performance of the FMHP, and the composite wick with wettability modification is more effective regarding both thermal resistance and maximum thermal power.


2021 ◽  
Vol 2021 (3) ◽  
pp. 4698-4705
Author(s):  
B. Denkena ◽  
◽  
B. Bergmann ◽  
K. Kono ◽  
R. Ishiguro ◽  
...  

Heat losses within motor spindles lead to undesired effects such as machining inaccuracies and de-creasing lifetime of the motor and bearings. To reduce thermal loads, complex shaft cooling concepts with costly sealing techniques exist. For this reason, a novel, less costly cooling concept has been de-veloped based on heat pipes with high thermal conductivity and fin-shaped heat exchangers. The de-sign and integration of these heat exchanger elements into a motor spindle is carried out using the fi-nite element method. The aim is to optimize the efficiency of the heat pipes and heat exchangers for optimal shaft cooling performance. For a simulation-based development of a prototype spindle, un-known thermal characteristics of the heat transfer elements must be determined. In this paper, the de-termination of the thermal conductivity of the heat pipes is described. The determination of conductivi-ty is done experimentally. First, the developed test rig and the applied procedure for the determination of the conductivity are shown. Subsequently, the experimental results are presented and discussed. Two types of heat pipes were analyzed: Copper heat pipes with sintered wick structure and nickel-plated copper heat pipes with axial grooves. The influences of rotational speed, heat flow rates and the angle between the heat pipe and main axis of rotation were investigated. The results indicate a distinct dependency of the conductivity on the varied parameters. However, changes of parameter values have very different quantitative and qualitative effects on the determined conductivities de-pending on the type of heat pipe.


Author(s):  
Suttida Maneemuang ◽  
Kambiz Vafai ◽  
Niti Kammuang-Lue ◽  
Pradit Terdtoon ◽  
Phrut Sakulchangsatjatai

2021 ◽  
Vol 183 ◽  
pp. 116203
Author(s):  
Heng Tang ◽  
Changxing Weng ◽  
Yong Tang ◽  
Hui Li ◽  
Teng Xu ◽  
...  

Author(s):  
N. Manikanda Prabu ◽  
S. Nallusamy ◽  
G. Sureshkannan

Removal of heat generation is an important characteristic needs to be considered in electromechanical and electronic devices which improve the stability and feasibility of system. Despite numerous cooling methods, heat pipes are recent updating in research line. Heat pipes are one of the super conducting medium of heat energy and it is being used as an equipment to absorb more heat through phase change process of cooling medium circulated in it. It ensures the direct enhancement in heat transfer capacity and characteristics. Nowadays, improvement of the thermal performance in heat pipes getting up with various technologies, especially combination of heat pipe and Nano fluids. It has been experimentally practiced and various results are observed by previous researches that wick structure also a part of reason in improvement. The aim of this research work is to analyze the influence of wick material to improve heat transfer characteristics in heat pipes. In addition, combination of nano coated wick material with heat pipes is comparatively analyzed. From the final observed results it was found that, the best combination of wick material is supporting the better cooling requirements in electronic devices.


Sign in / Sign up

Export Citation Format

Share Document