ANN: Prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes

2017 ◽  
Vol 120 ◽  
pp. 219-227 ◽  
Author(s):  
Tikendra Nath Verma ◽  
Prerana Nashine ◽  
Dheerendra Vikram Singh ◽  
Thokchom Subhaschandra Singh ◽  
Deepali Panwar
1999 ◽  
Vol 121 (1) ◽  
pp. 110-117 ◽  
Author(s):  
A. Muley ◽  
R. M. Manglik

Experimental heat transfer and isothermal pressure drop data for single-phase water flows in a plate heat exchanger (PHE) with chevron plates are presented. In a single-pass U-type counterflow PHE, three different chevron plate arrangements are considered: two symmetric plate arrangements with β = 30 deg/30 deg and 60 deg/60 deg, and one mixed-plate arrangement with β = 30 deg/60 deg. For water (2 < Pr < 6) flow rates in the 600 < Re < 104 regime, data for Nu and f are presented. The results show significant effects of both the chevron angle β and surface area enlargement factor φ. As β increases, and compared to a flat-plate pack, up to two to five times higher Nu are obtained; the concomitant f, however, are 13 to 44 times higher. Increasing φ also has a similar, though smaller effect. Based on experimental data for Re a 7000 and 30 deg ≤ β ≤ 60 deg, predictive correlations of the form Nu = C1,(β) D1(φ) Rep1(β)Pr1/3(μ/μw)0.14 and f = C2(β) D2(φ) Rep2(β) are devised. Finally, at constant pumping power, and depending upon Re, β, and φ, the heat transfer is found to be enhanced by up to 2.8 times that in an equivalent flat-plate channel.


2019 ◽  
Vol 12 (4) ◽  
pp. 350-356 ◽  
Author(s):  
Mohammed Kareemullah ◽  
K.M. Chethan ◽  
Mohammed K. Fouzan ◽  
B.V. Darshan ◽  
Abdul Razak Kaladgi ◽  
...  

Background:: In Shell and Tube Heat Exchanger (STHX), heat is exchanged between hot water (coming from industrial outlet by forced convection) to the cold water. Instead of water, if Nano fluids are used into these tubes, then there is a possibility of improved heat transfer because of high thermal conductivity of the nanofluids. Objective:: From many literature and patents, it was clear that the study of STHX using metal oxide nanoparticles is very scarce. Therefore, the objective of the present investigation is to check the thermal performance of STHX operated with zinc oxide nanofluid and compare with water as the base fluid. Methods:: Heat transfer analysis of a shell and tube heat exchanger was carried out experimentally using Zinc oxide as a nanofluid. Mass flow rate on tube side was varied while on the shell side it was kept constant. Various heat transfer parameters like heat transfer coefficient, heat transfer rate effectiveness and LMTD (Log Mean Temperature Difference) were studied. The experimental readings were recorded after the steady-state is reached under forced flow conditions. Results:: It was found that the effectiveness improves with increase in mass flow rate of nanofluids as compared to base fluid. Conclusion:: From the obtained results, it was concluded that heat transfer enhancement and effectiveness improvement does occur with nano fluids but at the cost of pumping power.


Author(s):  
S. Padmanabhan ◽  
Obulareddy Yuvatejeswar Reddy ◽  
Kanta Venkata Ajith Kumar Yadav ◽  
V.K. Bupesh Raja ◽  
K. Palanikumar

Sign in / Sign up

Export Citation Format

Share Document