scholarly journals Management of conjugate heat transfer using various arrangements of cylindrical vortex generators in micro-channels

2021 ◽  
Vol 182 ◽  
pp. 116097
Author(s):  
Muhammad F.B. Raihan ◽  
Mushtaq T. Al-Asadi ◽  
H.M. Thompson
Author(s):  
Giulio Croce ◽  
Olga Rovenskaya ◽  
Paola D’Agaro

A fully conjugate heat transfer analysis of gaseous flow, within slip flow regime, in short microchannel is presented. A Navier Stokes code, coupled with Maxwell and Smoluchowski slip and temperature jump model, is adopted. Due to the link between temperature and velocity field in highly compressible flows, results are presented for Nusselt number, heat sink thermal resistance and resulting wall temperature as well as Mach number profiles for different conditions, commenting on the relative importance of wall conduction, rarefaction and compressibility. Compressibility plays a major role, and the reduction in heat transfer rate due to axial conduction is quite remarkable.


1999 ◽  
Vol 122 (4) ◽  
pp. 641-652 ◽  
Author(s):  
S. Acharya ◽  
R. G. Hibbs ◽  
Y. Chen ◽  
D. E. Nikitopoulos

The effect of vortex generators on the heat transfer from internally ribbed passages is studied experimentally using a mass transfer technique. Cylindrical vortex generators placed directly above the ribs have been used in this study. Results are reported on the effect of the spacing between the vortex generator and the ribs. Detailed distributions of the Sherwood number contours and the centerline Sherwood number distributions are presented. Reynolds number values of 5000, 10,000, and 30,000 are studied and three generator-rib-spacing/rib-height (s/e) values of 0.55, 1, and 1.5 are considered. It is shown that at small generator-rib spacings (s/e=0.55), the two act as a single element, and lead to a retardation of the shear layer development past the reattachment point. This is generally associated with lower heat transfer. At a larger generator-rib spacing (s/e=1.5), the generator wake and the rib shear layer interact with each other to promote mixing and heat transfer. [S0022-1481(00)02103-4]


Author(s):  
Stefano Nebuloni ◽  
John R. Thome

This paper presents numerical simulations of annular laminar film condensation heat transfer in micro-channels of different internal shapes. The model, which is based on a finite volume formulation of the Navier-Stokes and energy equations for the liquid phase only, importantly accounts for the effects of axial and peripheral wall conduction and non-uniform heat flux not included in other models so far in the literature. The contributions of the surface tension, axial shear stresses and gravitational forces are included. This model has so far been validated versus various benchmark cases and versus experimental data available in literature, predicting microchannel heat transfer data with an average error of 20% or better. It is well-known that the thinning of the condensate film induced by surface tension due to gravity forces and shape of the surface, also known as the ‘Grigorig’ effect, has a strong consequence on the local heat transfer coefficient in condensation. Thus, the present model accounts for these effects on the heat transfer and pressure drop for a wide variety of geometrical shapes, sizes, wall materials and working fluid properties. In this paper, the conjugate heat transfer problem arising from the coupling between the thin film fluid dynamics, the heat transfer in the condensing fluid and the heat conduction in the channel wall has been studied. In particular, the work has focused on three external channel wall boundary conditions: a uniform wall temperature, a non uniform wall heat flux and single-phase convective cooling is presented. As the scale of the problem is reduced, i.e. when moving from mini to micro channels, the results shows that the axial conduction effects can become very important in the prediction of the wall temperature profile and the magnitude of the heat transfer coefficient and its distribution along the channel.


Sign in / Sign up

Export Citation Format

Share Document