Initial soil responses to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China: Nutrient availabilities, microbial properties and enzyme activities

2010 ◽  
Vol 46 (2) ◽  
pp. 291-299 ◽  
Author(s):  
Zhen-feng Xu ◽  
Rong Hu ◽  
Pei Xiong ◽  
Chuan Wan ◽  
Gang Cao ◽  
...  
2021 ◽  
Author(s):  
Zhijie Li ◽  
Zimin Li ◽  
Rüdiger Reichel ◽  
Kaijun Yang ◽  
Li Zhang ◽  
...  

Abstract Background Snow cover change has a great potential to impact soil nitrogen (N) pools and enzyme activities in boreal forests. Yet, the nature of this biochemical processes within soil aggregates is still limited. We conducted a snow manipulation experiment to investigate the effects of snow absence on N pools and enzyme activities within soil aggregates in a subalpine spruce forest on the eastern Tibetan Plateau of China. Results Snow absence increased extractable inorganic N pools (ammonium and nitrate) and enzyme activities, accompanying with the improvement of N mineralization rate. Regardless of snow manipulations, both soil extractable inorganic N and net N mineralization was higher in macroaggregates than that in the other two aggregates. In contrast, microaggregates had higher urease and nitrite reductase activities compared to macroaggregates and large macroaggregates. Compared with small macroaggregates and large macroaggregates, N pools and enzymes within microaggregates is more sensitive to snow absence. Conclusions Our results indicated that the impacts of snow cover change on soil N dynamic depend on aggregate sizes and winter conditions (e.g., snow cover and temperature). Such findings have important implication for soil N cycling in snow-covered subalpine forests experiencing pronounced winter climate change.


Sign in / Sign up

Export Citation Format

Share Document