available n
Recently Published Documents


TOTAL DOCUMENTS

795
(FIVE YEARS 302)

H-INDEX

35
(FIVE YEARS 5)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 250
Author(s):  
Janet B. García-Martínez ◽  
Jefferson E. Contreras-Ropero ◽  
Néstor A. Urbina-Suarez ◽  
Germán L. López-Barrera ◽  
Andrés F. Barajas-Solano ◽  
...  

The present research evaluates the simulation of a system for transforming inland-fisheries wastewater into sustainable fish feed using Designer® software. The data required were obtained from the experimental cultivation of Chlorella sp. in wastewater supplemented with N and P. According to the results, it is possible to produce up to 11,875 kg/year (31.3 kg/d) with a production cost of up to 18 (USD/kg) for dry biomass and 0.19 (USD/bottle) for concentrated biomass. Similarly, it was possible to establish the kinetics of growth of substrate-dependent biomass with a maximum production of 1.25 g/L after 15 days and 98% removal of available N coupled with 20% of P. It is essential to note the final production efficiency may vary depending on uncontrollable variables such as climate and quality of wastewater, among others.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 107
Author(s):  
Shoule Wang ◽  
Zhenyong Zhao ◽  
Shaoqing Ge ◽  
Ke Zhang ◽  
Changyan Tian ◽  
...  

Halophytes possess the capacity to uptake high levels of salt through physiological processes and their root architecture. Here, we investigated whether halophyte/non-halophyte intercropping in saline soil benefits plant growth and contains root-dialogue between interspecific species. Field and pot experiments were conducted to determine the plant biomasses and salt and nutrient distributions in three suaeda (Suaeda salsa)/maize (Zea mays L.) intercropping systems, set up by non-barrier, nylon-barrier, and plastic-barrier between plant roots. The suaeda/maize intercropping obviously transferred more Na+ to the suaeda root zone and decreased salt and Na+ contents. However, the biomass of the non-barrier-treated maize was significantly lower than that of the nylon and plastic barrier-treated maize. There was lower available N content in the soil of the non-barrier treated groups compared with the plastic barrier-treated groups. In addition, the pH was lower, and the available nutrient content was higher in the nylon barrier, which suggested that rhizospheric processes might occur between the two species. Therefore, we concluded that the suaeda/maize intercropping would be beneficial to the salt removal, but it caused an adverse effect for maize growth due to interspecific competition, and also revealed potential rhizospheric effects through the role of roots. This study provides an effective way for the improvement of saline land.


Author(s):  
TN Shila ◽  
MS Islam ◽  
MMM Hoque ◽  
MH Kabir ◽  
MR Jamil ◽  
...  

The study was conducted to investigate the soil properties and pesticide intensity in rice, banana and brinjal growing agricultural land of Delduar and Sakhipur upazila of Tangail district during July 2019 to June 2020. Forty five soil samples were collected from different crop land at the study area and analyzed in the Soil Resource Development Institute to determine the soil properties as pH, total organic matter (OM), total nitrogen (N), available phosphorus (P), available sulfur (S), available zinc (Zn), exchangeable potassium (K), exchangeable magnesium (Mg) and exchangeable calcium (Ca). However, pesticide used intensity was also evaluated through questionnaire survey with farmers and stakeholders in the study area. Results showed that pH, OM, available N, exchangeable Ca and exchangeable Mg content were significantly higher in rice growing land than banana and brinjal. On the other hand, available P, exchangeable K and available Zn content were substantially higher in brinjal growing land than rice and banana. The OM showed significant positive correlation with soil pH, available N, available S, exchangeable Mg and exchangeable Ca (r=0.37, 0.99, 0.31, 0.59 and 0.63, respectively), indicated rice growing land built up these soil properties through increasing soil OM. The available P showed significant and positive correlation with K and Zn (r=0.55 and 0.74, respectively), but negative correlation with exchangeable Mg and exchangeable Ca (r=-0.53 and -0.32, respectively). The exchangeable K showed significant and positive correlation with available Zn (r=0.45) but negative correlation with exchangeable Mg (r=-0.37). The Mg showed significant negative correlation with available Zn (r=-0.45) but positive correlation with exchangeable Ca (r=0.87). Results also revealed that pesticide used intensity was higher in brinjal followed by banana and minimum in rice crop. Study suggests that farmers require up-to-date information on soil nutrient status so that they may use the proper utilization of fertilizers and avoid using excessive amounts of fertilizers and pesticides in their crop land. Int. J. Agril. Res. Innov. Tech. 11(2): 85-94, Dec 2021


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 39
Author(s):  
Chunhua Ji ◽  
Hailin Liu ◽  
Zhengzao Cha ◽  
Qinghuo Lin ◽  
Gu Feng

Elemental stoichiometry reflects the interaction between plants, soil, and microorganisms, and links biogeochemical patterns with physiological limitations. The stoichiometry of elements in farmland soil is an important part of the function of the agroecosystem. Soil nitrogen (N), phosphorus (P), and potassium (K) are the main macronutrients in terrestrial ecosystems, which are closely related to biogeochemical cycles. Studying the temporal and spatial variability of soil nutrients in tropical farmland is of great significance for exploring the variation of soil nutrients and promoting the sustainable development of tropical agriculture. In this study, soil samples in the farmland of Hainan Island were collected at three different stages for exploring temporal and spatial variations of N, P, and K stoichiometry. Results showed that soil concentrations of available N, P, and K changed markedly with the temporal and spatial variability. The highest available N, P, and K concentrations appeared at the stage of 2016–2020 with values of 110.40 mg/kg, 51.91 mg/kg, and 82.76 mg/kg, respectively, while their lowest values were observed in 2010–2015 with 66.34 mg/kg, 11.27 mg/kg, and 45.77 mg/kg, respectively. The available nitrogen content in the three time periods first increased and then decreased with the increase of available potassium content, an opposite trend was observed between available nitrogen and phosphorus. The content of N increased in Haikou, Lingao, Ding’an, and P increased in Wengchang, and Lingshui and K increased in Danzhou and Wanning as time increased.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2595
Author(s):  
Gastón A. Iocoli ◽  
Luciano Orden ◽  
Fernando M. López ◽  
Marisa A. Gómez ◽  
María B. Villamil ◽  
...  

Mineralization studies are the first step in determining the usefulness of an amendment such as fertilizer, and are essential to creating guidelines for dairy waste management to help producers make informed decisions. Our goal was to assess the effects of dairy raw, composted, and digested manure amendments on C, N, and P mineralization to evaluate the feasibility of their in-farm production and use as organic fertilizers. The liquid and solid fractions of dairy effluent (LDE, SDE), dairy effluent digestate (DED), onion–cattle manure digestate and compost (OCMD, OCMC) were characterized by chemical and spectroscopic methods. Soil microcosms with LDE, SDE, DED, OCMD and OCMC and the C, N and P mineralization were determined periodically. Elemental and structural differences among amendments led to contrasting profiles of C, N, and P mineralization, and thus to differences in nutrient availability, immobilization, and CO2 emission. All processed materials were more stable than untreated waste, reducing C emissions. Digestates showed net C immobilization, and supplied the highest levels of available N, creating a relative P deficit. Instead, the compost supplied N and P via mineralization, producing a relative P excess. Future studies should aim at evaluating fertilization strategies that combine both kinds of amendments, to exploit their complimentary agronomic characteristics.


2021 ◽  
Vol 22 (3) ◽  
pp. 315-324
Author(s):  
Rajendiran S. Selladurai ◽  
Mohan Lal Dotaniya ◽  
M Vassanda Coumar ◽  
Samaresh Kundu ◽  
Nishant Kumar Sinha ◽  
...  

Soil quality degradation is a major threat to any agricultural production system. Therefore periodical monitoring of soil quality status is inevitable for sustainable management of agricultural production systems. Though there are various methods available to assess the soil quality, simple and management oriented methods are necessary. The current investigation aimed to evaluate soil quality of tribal areas of central India adopting minimum dataset of 15 soil physical, chemical and biological parameters. A novel scoring technique was followed to score soil quality indicators based on its relation with crop yield, degree of variation and percent deficiency. Relative soil quality index (RSQI) was calculated and was correlated with crop productivity. Most of the soils in the region had poor soil quality (77.2% in Jhabua, 85.4% in Alirajpur and 67.2% in Dhar) with low crop yield. The major constraints of crop production in these areas were low soil organic carbon (<0.5%), available N (<280 kg ha-1), S (<10 mg kg-1), P (<10 kg ha-1), Zn (<0.5 mg kg-1), dehydogenase activity (10 ?g TPF g-1 24 h-1) and soil depth (<1 m). Adopting sustainable management practices could improve soil quality and crop productivity. This new approach is simple and systematic; this principle can be easily adoptable to other locations, and principally focuses on management related and soil parameters that constraint to production and ecological functions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huanhuan Jiang ◽  
Sainan Li ◽  
Tong Wang ◽  
Xiaoyuan Chi ◽  
Peishi Qi ◽  
...  

Soil salinity has adverse effects on soil microbial activity and nutrient cycles and therefore limits crop growth and yield. Amendments with halotolerant phosphate-solubilizing bacteria (PSB) and rock phosphate (RP) may improve properties of saline soil. In this study, we investigated the effects of RP either alone or in combination with PSB (Providencia rettgeri strain TPM23) on peanut growth and soil quality in a saline soil. With the combined application of RP and PSB, plant length and biomass (roots and shoots) and uptake of phosphorus (P), nitrogen (N), and potassium (K) increased significantly. Soil Na+ and Cl– contents decreased in the PR alone or PR combined with PSB treatment groups. There were strongly synergistic effects of RP and PSB on soil quality, including a decrease in pH. The soil available N, P, and K contents were significantly affected by the PSB treatments. In addition, the alkaline phosphomonoesterases, urease, and dehydrogenase activities increased significantly compared with the untreated group; highest alkaline phosphomonoesterases activity was observed in the RP and PSB treatment groups. The composition of rhizosphere soil bacterial communities was determined using 454-pyrosequencing of the 16S rRNA gene. In the PR alone or PR combined with PSB treatment groups, the structure of the soil bacterial community improved with increasing richness and diversity. With PSB inoculation, the relative abundance of Acidobacteria, Chloroflexi, and Planctomycetes increased. The three phyla were also positively correlated with soil available N and root dry weight. These results suggested microbiological mechanisms by which the combined use of RP and PSB improved saline soil and promoted plant growth. Overall, the study indicates the combined use of RP and PSB can be an economical and sustainable strategy to increase plant growth in P-deficient and salt-affected soils.


Author(s):  
G. Anjana Devaraj ◽  
Sheeba Rebecca Isaac

Background: Bio-recycling of crop residues is contemplated as an environment friendly soil enrichment and conservation practice that sustains agricultural productivity in the long run. Legume residues are privileged by the unique nitrogen fixing capacity and rhizospheric properties that enhance soil fertility, thereby reducing the need for chemical nutrient inputs. The present study was conducted to evaluate the residual effect of red gram on fodder maize cultivated as succeeding crop in the southern laterites of Thiruvananthapuram district, Kerala, India. Methods: The field experiment to assess the effect of red gram residue incorporation on the growth and yield of fodder maize was carried out in the Instructional Farm, College of Agriculture, Vellayani, Kerala during June - August 2019. Fodder maize (African tall) was sown in the plots after incorporation of crop residues of red gram varieties (APK 1 and Vamban (Rg) 3) grown under different planting geometry (40 cm x 20 cm and 60 cm x 30 cm) and NPK doses (40:80:40, 30:60:30 and 20:40:20 kg NPK ha-1) and compared with the package of practices recommendation and in randomized block design (RBD) replicated thrice. Result: Significantly higher quantities of red gram residues were realised and incorporated in the treatments involving a planting geometry of 40 cm x 20 cm and an NPK dose of 40:80:40 kg NPK ha-1 in both varieties used, Vamban (Rg) 3 and APK 1 (T7 and T1). Nutrient contents in the residues and decomposition in T1 and T7 resulted in the maximum additions in soil, available N, P and K status and dehydrogenase activity. Evaluation of the residual effects of the legume on fodder maize revealed the significantly highest growth and yields in maize raised with chemical fertilizers as per package recommendation and, among the residue incorporated treatments, maximum plant height and fodder yields were recorded in the treatment in which residues of Vamban (Rg) 3 raised at 40 cm x 20 cm spacing and fertilised with 40:80:40 kg NPK ha-1 were incorporated, on par with variety APK 1 raised under same management practice. The green fodder yield with residue incorporation was 80-90 per cent that under chemical fertilizer managed treatment. Among the quality parameters, crude protein (9.30%) was the highest with chemical fertilizer application while carbohydrate content (66.23%) was the lowest.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Chen ◽  
Na Li ◽  
Jiayu Chang ◽  
Kaida Ren ◽  
Jiangtao Zhou ◽  
...  

Plant secondary metabolites (SMs) play a crucial role in plant defense against pathogens and adaptation to environmental stresses, some of which are produced from medicinal plants and are the material basis of clinical efficacy and vital indicators for quality evaluation of corresponding medicinal materials. The influence of plant microbiota on plant nutrient uptake, production, and stress tolerance has been revealed, but the associations between plant microbiota and the accumulation of SMs in medicinal plants remain largely unknown. Plant SMs can vary among individuals, which could be partly ascribed to the shift in microbial community associated with the plant host. In the present study, we sampled fine roots and rhizosphere soils of Sophora flavescens grown in four well-separated cities/counties in China and determined the taxonomic composition of rhizosphere bacterial communities using Illumina 16S amplicon sequencing. In addition, the association of the rhizosphere bacterial microbiota with the accumulation of alkaloids in the roots of S. flavescens was analyzed. The results showed that S. flavescens hosted distinct bacterial communities in the rhizosphere across geographic locations and plant ages, also indicating that geographic location was a larger source of variation than plant age. Moreover, redundancy analysis revealed that spatial, climatic (mean annual temperature and precipitation), and edaphic factors (pH and available N and P) were the key drivers that shape the rhizosphere bacterial communities. Furthermore, the results of the Mantel test demonstrated that the rhizosphere bacterial microbiota was remarkably correlated with the contents of oxymatrine, sophoridine, and matrine + oxymatrine in roots. Specific taxa belonging to Actinobacteria and Chloroflexi were identified as potential beneficial bacteria associated with the total accumulation of matrine and oxymatrine by a random forest machine learning algorithm. Finally, the structural equation modeling indicated that the Actinobacteria phylum had a direct effect on the total accumulation of matrine and oxymatrine. The present study addresses the association between the rhizosphere bacterial communities and the accumulation of alkaloids in the medicinal plant S. flavescens. Our findings may provide a basis for the quality improvement and sustainable utilization of this medicinal plant thorough rhizosphere microbiota manipulation.


Author(s):  
S. Balaji Nayak ◽  
D. Balaguravaiah ◽  
K. V. Ramana ◽  
T. Giridharakrishna ◽  
P. Munirathnam ◽  
...  

A study was undertaken to delineation of spatial variability of soil fertility status in order to prepare soil available nutrient maps for improved productivity in different crops grown in the study area of Kurnool revenue division in Kurnool district of Andhra Pradesh state using remote sensing and GIS techniques. The Knowledge of spatial-variability is critical for site specific nutrient management in soil fertility to obtain higher yields. Soil sample (350) were collected from surface from 350 selected sites for preparing precise digital maps using point, line and polygon tools of the Geographic Information System (GIS) with ArcGIS software 10.3 was used for database creation and for creating the union of various thematic maps. The spatial variability maps were generated and delineated into different zones for N, P and K. Soil available Nitrogen, Phosphorus and Potassium spatial variability values generated from the thematic maps of Kurnool division were used to establish fertilizer recommendations for cotton in kharif and Chickpea in rabi during  2018-19 seasons. The recommended doses of Nitrogen (RDN) that worked for cotton were 401 to 450, 351 to 400, > 450 and < 350 kg ha-1 for the areas with Nitrogen availability of 140 to 210, 210 to 280, <140 and > 280 kg/ha, respectively. The Phosphorous fertilizer recommendation for soils with available P of < 30 kg/ha and > 30 kg/ha was figured out as > 250 kg ha-1 and < 250 kg ha-1, respectively. For soil available Potassium recorded 230 to 560, < 230 and > 560 kg/ha, the K recommendation was figured out as 301 to 400, > 401 and < 300 kg/ha, respectively. Recommended doses of Nitrogen (RDN) was worked out for chickpea were 51 to 75, > 76 and < 50 kg/ha for the areas with available N ranges of 184 to 280, < 184 and > 280 kg/ha, respectively. The Phosphatic fertilizer recommendation for soils of available P of < 23.5 and 23.5 to 40 kg/ha was figured out as > 200 kg/ha and 171 to 200 kg/ha, respectively. For the soil available potassium recorded 253 to 412, 413 to 570, < 253 and > 570 kg/ha, the K recommendation was figured out as 66 to 100, 31 to 65, > 100 and < 30 kg/ha, respectively.


Sign in / Sign up

Export Citation Format

Share Document