scholarly journals Enhancement in the Extinction Ratio of a Wire Grid Polarizer in the Mid-Wavelength Infrared Range via Hot Electron Diffused Cold-Annealing

2021 ◽  
pp. 151965
Author(s):  
Hyesu Kim ◽  
Seok Young Ji ◽  
Sung-Hak Cho ◽  
Joo-Yun Jung ◽  
Won Seok Chang
2017 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Antonio Ferraro ◽  
Dimitrios C. Zografopoulos ◽  
Roberto Caputo ◽  
Romeo Beccherelli

Wire-grid polarizers constitute a traditional component for the control of polarization in free-space devices that operate in a broad part of the electromagnetic spectrum. Here, we present an aluminium-based THz wire grid polarizer, fabricated on a sub-wavelength thin flexible and conformal foil of Zeonor polymer having a thickness of 40um. The fabricated device,characterized by means of THz time-domain spectroscopy, exhibitsa high extinction ratio between 30 and 45dB in the 0.3-2.1THz range. The insertion losses oscillate between 0 and 1.1dB andthey stemalmost exclusively from moderate Fabry-Perót reflections and it is engineered forvanishing at 2THz for operation with quantum cascade lasers. Full Text: PDF ReferencesI. F. Akyildiz, J. M. Jornet, C. Han, "Terahertz band: Next frontier for wireless communications", Phys. Commun. 12, 16 (2014). CrossRef M.C. Kemp, P.F. Taday, B.E. Cole, J.A. Cluff, A.J. Fitzgerald, W.R. Tribe, "Security applications of terahertz technology", Proc. SPIE 5070, 44 (2003). CrossRef M. Schirmer, M. Fujio, M. Minami, J. Miura, T. Araki, T. Yasui, "Biomedical applications of a real-time terahertz color scanner", Biomed. Opt. Express 1, 354 (2010). CrossRef R.P. Cogdill, R.N. Forcht, Y. Shen, P.F. Taday, J.R. Creekmore, C.A. Anderson, J.K. Drennen, "Comparison of Terahertz Pulse Imaging and Near-Infrared Spectroscopy for Rapid, Non-Destructive Analysis of Tablet Coating Thickness and Uniformity", J. Pharm. Innov. 2, 29 (2007). CrossRef Y.-C. Shen, "Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review", Int. J. Pharm. 417, 48(2011). CrossRef A.G. Davies, A.D. Burnett, W. Fan, E.H. Linfield, J.E. Cunningham, "Terahertz spectroscopy of explosives and drugs", Mater. Today 11, 18 (2008). CrossRef J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, "THz imaging and sensing for security applications?explosives, weapons and drugs", Semicond. Sci. Technol. 20, S266 (2005). CrossRef D. Saeedkia, Handbook of Terahertz Technology for Imaging, Sensing and Communications (Elsevier, 2013).N. Born, M. Reuter, M. Koch, M. Scheller, "High-Q terahertz bandpass filters based on coherently interfering metasurface reflections", Opt. Lett. 38, 908 (2013). CrossRef A. Ferraro, D.C. Zografopoulos, R. Caputo, R. Beccherelli, "Periodical Elements as Low-Cost Building Blocks for Tunable Terahertz Filters", IEEE Photonics Technol. Lett. 28, 2459 (2016). CrossRef A. Ferraro, D.C. Zografopoulos, R. Caputo, R. Beccherelli, "Broad- and Narrow-Line Terahertz Filtering in Frequency-Selective Surfaces Patterned on Thin Low-Loss Polymer Substrates", IEEE J. Sel. Top. Quantum Electron. 23 (2017). CrossRef B. S.-Y. Ung, B. Weng, R. Shepherd, D. Abbott, C. Fumeaux, "Inkjet printed conductive polymer-based beam-splitters for terahertz applications", Opt. Mater. Express 3, 1242 (2013). CrossRef J.-S. Li, D. Xu, J. Yao, "Compact terahertz wave polarizing beam splitter", Appl. Opt. 49, 4494 (2010). CrossRef K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, I. Dierking, "Polymer stabilized liquid crystal phase shifter for terahertz waves", Opt. Express 21, 12395 (2013). CrossRef D.C. Zografopoulos, R. Beccherelli, "Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching", Sci. Rep. 5, 13137 (2015). CrossRef G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, R. Gajić, "Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals", Phys. Rev. Appl. 3, 064007 (2015). CrossRef K. Iwaszczuk, A.C. Strikwerda, K. Fan, X. Zhang, R.D. Averitt, P.U. Jepsen, "Flexible metamaterial absorbers for stealth applications at terahertz frequencies", Opt. Express 20, 635 (2012). CrossRef F. Yan, C. Yu, H. Park, E.P.J. Parrott, E. Pickwell-MacPherson, "Advances in Polarizer Technology for Terahertz Frequency Applications", J. Infrared Millim. Terahertz Waves 34, 489 (2013). CrossRef http://www.tydexoptics.com DirectLink K. Imakita, T. Kamada, M. Fujii, K. Aoki, M. Mizuhata, S. Hayashi, "Terahertz wire grid polarizer fabricated by imprinting porous silicon", Opt. Lett. 38, 5067 (2013). CrossRef A. Isozaki, et al., "Double-layer wire grid polarizer for improving extinction ratio", Solid-State Sens. Actuators Microsyst. Transducers Eurosensors XXVII 2013 Transducers Eurosensors XXVII 17th Int. Conf. On, IEEE, pp. 530?533 (2013). DirectLink A. Ferraro, D. C. Zografopoulos, M. Missori, M. Peccianti, R. Caputo, R. Beccherelli, "Flexible terahertz wire grid polarizer with high extinction ratio and low loss", Opt. Lett. 41, 2009(2016). CrossRef M.S. Vitiello, G. Scalari, B. Williams, P.D. Natale, "Quantum cascade lasers: 20 years of challenges", Opt. Express 23, 5167(2015). CrossRef A. Podzorov, G. Gallot, "Low-loss polymers for terahertz applications", Appl. Opt. 47, 3254(2008). CrossRef


2016 ◽  
Vol 41 (9) ◽  
pp. 2009 ◽  
Author(s):  
A. Ferraro ◽  
D. C. Zografopoulos ◽  
M. Missori ◽  
M. Peccianti ◽  
R. Caputo ◽  
...  

2015 ◽  
Vol 54 (4) ◽  
pp. 047105
Author(s):  
Isabelle Verrier ◽  
Thomas Kämpfe ◽  
Frederic Celle ◽  
Anthony Cazier ◽  
Markus Guttmann ◽  
...  

Author(s):  
Liling Cho ◽  
David L. Wetzel

Polarized infrared microscopy has been used for forensic purposes to differentiate among polymer fibers. Dichroism can be used to compare and discriminate between different polyester fibers, including those composed of polyethylene terephthalate that are frequently encountered during criminal casework. In the fiber manufacturering process, fibers are drawn to develop molecular orientation and crystallinity. Macromolecular chains are oriented with respect to the long axis of the fiber. It is desirable to determine the relationship between the molecular orientation and stretching properties. This is particularly useful on a single fiber basis. Polarized spectroscopic differences observed from a single fiber are proposed to reveal the extent of molecular orientation within that single fiber. In the work presented, we compared the dichroic ratio between unstretched and stretched polyester fibers, and the transition point between the two forms of the same fiber. These techniques were applied to different polyester fibers. A fiber stretching device was fabricated for use on the instrument (IRμs, Spectra-Tech) stage. Tension was applied with a micrometer screw until a “neck” was produced in the stretched fiber. Spectra were obtained from an area of 24×48 μm. A wire-grid polarizer was used between the source and the sample.


2021 ◽  
Vol 188 ◽  
pp. 404-414
Author(s):  
Nazariy Jaworski ◽  
Nazariy Andrushchak ◽  
Mykhailo Lobur ◽  
Marek Iwaniec

Author(s):  
Hongkyu Park ◽  
Huang Zhe ◽  
Edward PJ Parrott ◽  
Andy Chan ◽  
Emma Pickwell-MacPherson

Sign in / Sign up

Export Citation Format

Share Document