Seasonal changes and endocrine regulation of gonadal development in hatchery-produced Pacific bluefin tuna Thunnus orientalis broodstock in sea cages

Aquaculture ◽  
2021 ◽  
pp. 737199
Author(s):  
Kentaro Higuchi ◽  
Ayako Suzuki ◽  
Takeshi Eba ◽  
Hiroshi Hashimoto ◽  
Kazunori Kumon ◽  
...  
Aquaculture ◽  
2021 ◽  
pp. 736562
Author(s):  
Koji Murashita ◽  
Hiroshi Hashimoto ◽  
Toshinori Takashi ◽  
Takeshi Eba ◽  
Kazunori Kumon ◽  
...  

2016 ◽  
Vol 174 ◽  
pp. 30-39 ◽  
Author(s):  
Yumi Okochi ◽  
Osamu Abe ◽  
Sho Tanaka ◽  
Yukio Ishihara ◽  
Akio Shimizu

2014 ◽  
Vol 81 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Yasuo Agawa ◽  
Mayui Iwaki ◽  
Takafumi Komiya ◽  
Tomoki Honryo ◽  
Kouhei Tamura ◽  
...  

2014 ◽  
Vol 47 (7) ◽  
pp. 2040-2049 ◽  
Author(s):  
Takayuki Ohnishi ◽  
Amal Biswas ◽  
Kohshi Kaminaka ◽  
Takahiro Nakao ◽  
Masashi Nakajima ◽  
...  

2015 ◽  
Vol 72 (7) ◽  
pp. 2128-2138 ◽  
Author(s):  
Hannes Baumann ◽  
R. J. D. Wells ◽  
Jay R. Rooker ◽  
Saijin Zhang ◽  
Zofia Baumann ◽  
...  

Abstract Juvenile Pacific bluefin tuna (PBT, Thunnus orientalis) are known to migrate from western Pacific spawning grounds to their eastern Pacific nursery and feeding grounds in the California Current Large Marine Ecosystem (CCLME), but the timing, durations, and fraction of the population that makes these migrations need to be better understood for improved management. To complement recent work focused on stable isotope and radiotracer approaches (“tracer toolbox”; Madigan et al., 2014) we explored the suitability of combining longitudinal analyses of otolith microstructure and trace elemental composition in age ∼1–2 PBT (n = 24, 66–76 cm curved fork length) for inferring the arrival of individuals in the CCLME. Element:Ca ratios in transverse otolith sections (9–12 rows, triplicate ablations from primordium to edge, ø50 μm) were quantified for eight elements: Li, Mg, Mn, Co, Cu, Zn, Sr, and Ba, which was followed by microstructure analysis to provide age estimates corresponding to each ablation spot. Age estimates from otoliths ranged from 328 to 498 d post-hatch. The combined elemental signatures of four elements (Ba, Mg, Co, Cu) showed a significant increase at the otolith edge in approximately half of the individuals (30–60 d before catch). Given the different oceanographic properties of oligotrophic open Pacific vs. high nutrient, upwelling CCLME waters, this signal is consistent with the entry of the fish into the CCLME, which was estimated to occur primarily in July after a transoceanic migration of ∼1.5–2.0 months. Our approach comprises a useful addition to the available tracer toolbox and can provide additional and complementary understanding of trans-Pacific migration patterns in PBT.


2021 ◽  
Vol 43 (3) ◽  
pp. 2098-2110
Author(s):  
Motoshige Yasuike ◽  
Kazunori Kumon ◽  
Yosuke Tanaka ◽  
Kenji Saitoh ◽  
Takuma Sugaya

Mass spawning in fish culture often brings about a marked variance in family size, which can cause a reduction in effective population sizes in seed production for stock enhancement. This study reports an example of combined pedigree information and gene expression phenotypes to understand differential family survival mechanisms in early stages of Pacific bluefin tuna, Thunnus orientalis, in a mass culture tank. Initially, parentage was determined using the partial mitochondrial DNA control region sequence and 11 microsatellite loci at 1, 10, 15, and 40 days post-hatch (DPH). A dramatic proportional change in the families was observed at around 15 DPH; therefore, transcriptome analysis was conducted for the 15 DPH larvae using a previously developed oligonucleotide microarray. This analysis successfully addressed the family-specific gene expression phenotypes with 5739 differentially expressed genes and highlighted the importance of expression levels of gastric-function-related genes at the developmental stage for subsequent survival. This strategy demonstrated herein can be broadly applicable to species of interest in aquaculture to comprehend the molecular mechanism of parental effects on offspring survival, which will contribute to the optimization of breeding technologies.


Sign in / Sign up

Export Citation Format

Share Document