11-Year Mean Follow-Up of Acetabular Impaction Grafting With a Mixture of Bone Graft and Hydroxyapatite Porous Synthetic Bone Substitute

2018 ◽  
Vol 33 (5) ◽  
pp. 1481-1486 ◽  
Author(s):  
Kareem M. Abdullah ◽  
Nasir Hussain ◽  
Samuel J. Parsons ◽  
Matthew J.L. Porteous ◽  
Amit Atrey
2014 ◽  
Vol 40 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Shahram Ghanaati ◽  
Jonas Lorenz ◽  
Karina Obreja ◽  
Joseph Choukroun ◽  
Constantin Landes ◽  
...  

The present study reports on a 3-year clinical and radiologic follow-up investigation of dental implants placed 3 and 6 months after sinus augmentation in 14 patients. Augmentation was performed with a synthetic bone substitute material composed of nanocrystalline hydroxyapatite. The aim of the study was to determine how the integration period of the bone substitute material, that is, 3 months or 6 months, influences implant integration within the patient's upper jaw. Therefore, the following clinical and radiologic parameters were investigated: implant being in situ; Periotest value; and presence of peri-implant osteolysis, bleeding on probing, plaque, and soft tissue recession around the implants. At the follow-up investigation 3 years after placement, 23 of 24 implants were in situ and suitable for prosthetic rehabilitation. No implants in either study group were mobile or showed peri-implant osteolysis. Only a few implants showed plaque or soft tissue variations. Within its limits, the present study showed comparable clinical performance of dental implants placed 3 months after sinus floor augmentation to implants placed 6 months after augmentation. The results of all investigated parameters were in accordance with results found in the literature. It can be concluded that augmentation with the applied synthetic bone substitute material already forms a sufficient implantation bed 3 months after augmentation, which enables long-term, stable, implant-retained restoration. These findings might contribute to a reduced healing time after augmentation, which would be favorable for patients and clinicians.


2021 ◽  
Vol 108 (Supplement_2) ◽  
Author(s):  
A Aljawadi ◽  
I Madhi ◽  
T Naylor ◽  
M Elmajee ◽  
A Islam ◽  
...  

Abstract Background Management of traumatic bone void associated with Gustilo IIIB open fractures is challenging. Gentamicin eluting synthetic bone graft substitute (Cerament-G) had been recently utilised for the management of patients with these injuries. This study aims to assess radiological signs of Cerament-G remodelling. Method Retrospective data analysis of all patients admitted to our unit with IIIB open fractures who had Cerament-G applied as avoid filler. Postoperative radiographic images of the fracture site at 6-weeks, 3-months, 6-months and at the last follow-up were reviewed. The radiological signs of Cerament-G integration, percent of void healing, and bone cortical thickness at the final follow-up were assessed. Results 34 patients met our inclusion criteria, mean age: 42 years. Mean follow-up time was 20 months. 59% of patients had excellent (>90%) void filling, 26.4% of patients had 50-90% void filling, and 14.6% had < 50% void filling. Normal bone cortical thickness was restored on AP and Lateral views in 55.8% of patients. No residual Cerement-G was seen on X-rays at the final follow-up in any of the patients. Conclusions Our results showed successful integration of Cerament-G with excellent void filling and normal cortical thickness achieved in more than half of the patients.


Medicina ◽  
2020 ◽  
Vol 56 (2) ◽  
pp. 46
Author(s):  
Javier Flores Fraile ◽  
Nansi López-Valverde ◽  
Arcadio García de Castro Andews ◽  
Juan Santos Marino ◽  
Juan Ramírez ◽  
...  

Background and Objectives: Maxillary bone defects related to post-extraction alveolar ridge resorption are usual. These defects may lead to failure in further surgical implant phases given the lack of bone volume to perform the dental implant. The objective of this clinical assay was to evaluate the safety and efficacy of an experimental synthetic bone substitute in the preservation of post-extraction maxillary alveoli. Materials and Methods: 33 voluntary patients who had at least one maxillary premolar tooth that was a candidate for exodontia (n = 39) and subsequent implant rehabilitation participated. The regenerated alveoli were monitored by means of periodic clinical examinations (days 9 ± 1, 21 ± 4, 42 ± 6, and 84 ± 6), measuring the height and width of the alveolar crest (days 0 and 180 ± 5), measurement of radiodensity using tomographic techniques (days 0–5 and 175 ± 5), and histological examination of biopsies collected at 180 ± 5 days. Results: No significant differences were observed during the entire follow-up period between the two groups with respect to the safety variables studied. A variation in width of −0.9 ± 1.3 mm and −0.6 ± 1.5 mm, and a variation in height of −0.1 ± 0.9 mm and −0.3 ± 0.7 mm was observed for experimental material Sil-Oss® and Bio-Oss®, respectively. The radiodensity of the alveoli regenerated with the experimental material was significantly lower than that corresponding to Bio-Oss®. However, the histological study showed greater osteoid matrix and replacement of the material with newformed bone in the implanted beds with the experimental material. Conclusions: Both materials can be used safely and proved equally effective in maintaining alveolar flange dimensions, they are also histologically biocompatible, bioactive and osteoconductive. The experimental material showed the advantage of being resorbable and replaced with newformed bone, in addition to promoting bone regeneration.


2015 ◽  
Vol 41 (3) ◽  
pp. 240-250 ◽  
Author(s):  
Carlo Mangano ◽  
Barbara Barboni ◽  
Luca Valbonetti ◽  
Paolo Berardinelli ◽  
Alessandra Martelli ◽  
...  

In this study, the in vivo behavior of a custom-made three-dimensional (3D) synthetic bone substitute was evaluated when used as scaffold for sinus augmentation procedures in an animal model. The scaffold was a calcium phosphate ceramic fabricated by the direct rapid prototyping technique, dispense-plotting. The geometrical and chemical properties of the scaffold were first analyzed through light and electron scanning microscopes, helium picnometer, and semi-quantitative X-ray diffraction measurements. Then, 6 sheep underwent monolateral sinus augmentation with the fabricated scaffolds. The animals were euthanized after healing periods of 45 and 90 days, and block sections including the grafted area were obtained. Bone samples were subjected to micro computerized tomography, morphological and histomorphometric analyses. A complete integration of the scaffold was reported, with abundant deposition of newly formed bone tissue within the biomaterial pores. Moreover, initial foci of bone remodeling were mainly localized at the periphery of the implanted area after 45 days, while continuous bridges of mature lamellar bone were recorded in 90-day specimens. This evidence supports the hypothesis that bone regeneration proceeds from the periphery to the center of the sinus cavity. These results showed how a technique allowing control of porosity, pore design, and external shape of a ceramic bone substitute may be valuable for producing synthetic bone grafts with good clinical performances.


Sign in / Sign up

Export Citation Format

Share Document