Paper 71: On the Relative Contribution of the Two Main Anterior Cruciate Ligament Functional Bundles to Intact Knee Kinematics

2012 ◽  
Vol 28 (8) ◽  
pp. e218-e219
Author(s):  
Thomas Neri ◽  
Danè Dabirrahmani ◽  
Aaron Beach ◽  
Samuel Grasso ◽  
Sven Putnis ◽  
...  

ObjectiveThe optimal anterolateral procedure to control anterolateral rotational laxity of the knee is still unknown. The objective was to compare the ability of five anterolateral procedures performed in combination with anterior cruciate ligament reconstruction (ACLR) to restore native knee kinematics in the setting of a deficient anterior cruciate ligament (ACL) and anterolateral structures.MethodsA controlled laboratory study was performed using 10 fresh-frozen cadaveric whole lower limbs with intact iliotibial band. Kinematics from 0° to 90° of flexion were recorded using a motion analysis three-dimensional (3D) optoelectronic system, allowing assessment of internal rotation (IR) and anteroposterior (AP) tibial translation at 30° and 90° of flexion. Joint centres and bony landmarks were calculated from 3D bone models obtained from CT scans. Intact knee kinematics were assessed initially, followed by sequential section of the ACL and anterolateral structures (anterolateral ligament, anterolateral capsule and Kaplan fibres). After ACLR, five anterolateral procedures were performed consecutively on the same knee: ALLR, modified Ellison, deep Lemaire, superficial Lemaire and modified MacIntosh. The last three procedures were randomised. For each procedure, the graft was fixed in neutral rotation at 30° of flexion and with a tension of 20 N.ResultsIsolated ACLR did not restore normal overall knee kinematics in a combined ACL plus anterolateral-deficient knee, leaving a residual tibial rotational laxity (p=0.034). Only the ALLR (p=0.661) and modified Ellison procedure (p=0.641) restored overall IR kinematics to the normal intact state. Superficial and deep Lemaire and modified MacIntosh tenodeses overconstrained IR, leading to shifted and different kinematics compared with the intact condition (p=0.004, p=0.001 and p=0.045, respectively). Compared with ACLR state, addition of an anterolateral procedure did not induce any additional control on AP translation at 30° and 90° of flexion (all p>0.05), except for the superficial Lemaire procedure at 90° (p=0.032).ConclusionIn biomechanical in vitro setting, a comparison of five anterolateral procedures revealed that addition of either ALLR or modified Ellison procedure restored overall native knee kinematics in a combined ACL plus anterolateral-deficient knee. Superficial and deep Lemaire and modified MacIntosh tenodeses achieved excellent rotational control but overconstrained IR, leading to a change from intact knee kinematics.Level of evidenceThe level-of-evidence statement does not apply for this laboratory experiments study.


2001 ◽  
Vol 29 (6) ◽  
pp. 771-776 ◽  
Author(s):  
Jürgen Höher ◽  
Akihiro Kanamori ◽  
Jennifer Zeminski ◽  
Freddie H. Fu ◽  
Savio L-Y. Woo

Ten cadaveric knees (donor ages, 36 to 66 years) were tested at full extension, 15°, 30°, and 90° of flexion under a 134-N anterior tibial load. In each knee, the kinematics as well as in situ force in the graft were compared when the graft was fixed with the tibia in four different positions: full knee extension while the surgeon applied a posterior tibial load (Position 1), 30° of flexion with the tibia at the neutral position of the intact knee (Position 2), 30° of flexion with a 67-N posterior tibial load (Position 3), and 30° of flexion with a 134-N posterior tibial load (Position 4). For Positions 1 and 2, the anterior tibial translation and the in situ forces were up to 60% greater and 36% smaller, respectively, than that of the intact knee. For Position 3, knee kinematics and in situ forces were closest to those observed in the intact knee. For Position 4, anterior tibial translation was significantly decreased by up to 2 mm and the in situ force increased up to 31 N. These results suggest that the position of the tibia during graft fixation is an important consideration for the biomechanical performance of an anterior cruciate ligament-reconstructed knee.


2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Guoan Li ◽  
Ali Hosseini ◽  
Hemanth Gadikota ◽  
Thomas Gill

This study evaluated the biomechanical efficacy of single-tunnel double-bundle anterior cruciate ligament (ACL) reconstruction technique. The graft construct is achieved using a novel fixation device that splits an ACL (SPACL) graft into two bundles, recreating the anteromedial (AM) and posterolateral (PL) bundles for ACL reconstruction. A pullout strength test of the SPACL was performed using a 7-mm bovine digital extensor tendon graft. The capability in restoration of knee kinematics after SPACL reconstruction was investigated using cadaveric human knees on a robotic testing system under an anterior tibial load of 134 N and a simulated quadriceps load of 400 N. The data indicated that the SPACL graft has a pullout strength of 823.7±172.3 N. Under the 134 N anterior tibial load, the anteroposterior joint laxity had increased constraint using the SPACL reconstruction but not significantly (p > 0.05) at all selected flexion angles. Under the 400 N quadriceps load, no significant differences were observed between the anterior tibial translation of intact knee and SPACL conditions at all selected flexion angles, but the SPACL graft induced a significant increase in external tibial rotation compared to the intact knee condition at all selected flexion angles with a maximal external rotation of −3.20 deg ±3.6 deg at 90 deg flexion. These data showed that the SPACL technique is equivalent or superior to existing ACL reconstruction techniques in restoration of knee laxity and kinematics. The new SPACL reconstruction technique could provide a valuable alternation to contemporary ACL reconstruction surgery by more closely recreating native ACL kinematics.


Sign in / Sign up

Export Citation Format

Share Document