The Correlation Between Arthroscopically Defined Acetabular Cartilage Defects and a Proposed Preoperative Delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage Index in Hips of Patients With Femoroacetabular Impingement Syndrome

2018 ◽  
Vol 34 (4) ◽  
pp. 1202-1212 ◽  
Author(s):  
Itay Perets ◽  
Edwin O. Chaharbakhshi ◽  
David E. Hartigan ◽  
Victor Ortiz-Declet ◽  
Brian Mu ◽  
...  
Cartilage ◽  
2019 ◽  
pp. 194760351987085 ◽  
Author(s):  
Noam Ben-Eliezer ◽  
José G. Raya ◽  
James S. Babb ◽  
Thomas Youm ◽  
Daniel K. Sodickson ◽  
...  

Objective The outcome of arthroscopic treatment for femoroacetabular impingement (FAI) depends on the preoperative status of the hip cartilage. Quantitative T2 can detect early biochemical cartilage changes, but its routine implementation is challenging. Furthermore, intrinsic T2 variability between patients makes it difficult to define a threshold to identify cartilage lesions. To address this, we propose a normalized T2-index as a new method to evaluate cartilage in FAI. Design We retrospectively analyzed magnetic resonance imaging (MRI) data of 18 FAI patients with arthroscopically confirmed cartilage defects. Cartilage T2 maps were reconstructed from multi-spin-echo 3-T data using the echo-modulation-curve (EMC) model-based technique. The central femoral cartilage, assumed healthy in early-stage FAI, was used as the normalization reference to define a T2-index. We investigated the ability of the T2-index to detect surgically confirmed cartilage lesions. Results The average T2-index was 1.14 ± 0.1 and 1.13 ± 0.1 for 2 separated segmentations. Using T2-index >1 as the threshold for damaged cartilage, accuracy was 88% and 100% for the 2 segmentations. We found moderate intraobserver repeatability, although separate segmentations yielded comparable accuracy. Damaged cartilage could not be identified using nonnormalized average T2 values. Conclusions This preliminary study confirms the importance of normalizing T2 values to account for interpatient variability and suggests that the T2-index is a promising biomarker for the detection of cartilage lesions in FAI. Future work is needed to confirm that combining T2-index with morphologic MRI and other quantitative biomarkers could improve cartilage assessment in FAI.


2019 ◽  
Vol 46 (11) ◽  
pp. 1445-1449 ◽  
Author(s):  
Xenofon Baraliakos ◽  
Florian Hoffmann ◽  
Xiaohu Deng ◽  
Yan-Yan Wang ◽  
Feng Huang ◽  
...  

Objective.The volumetric interpolated breath-hold examination (VIBE) magnetic resonance imaging (MRI) technique can visualize erosive cartilage defects in peripheral joints. We evaluated the ability of VIBE to detect erosions in sacroiliac joints (SIJ) of patients with axial spondyloarthritis (axSpA) compared to the established T1-weighted MRI sequence and computed tomography (CT).Methods.MRI (T1-weighted and VIBE) and CT scans of SIJ of 109 patients with axSpA were evaluated by 2 blinded readers based on SIJ quadrants (SQ). Erosions were defined according to Assessment of Spondyloarthritis international Society (ASAS) definitions. Scores were recorded if readers were in agreement.Results.Erosions were less frequently detected by CT (153 SQ) than by T1-weighted MRI (182 SQ; p = 0.008) and VIBE-MRI (199 SQ; p < 0.001 vs CT and p = 0.031 vs T1-weighted MRI). Taking CT as the gold standard, the sensitivity of VIBE-MRI (71.2%) was higher than that for T1-weighted MRI (63.4%), with similar specificity (87.3% vs 88%, respectively). In linear regression analysis, younger age was significantly associated with occurrence of erosions independently in VIBE-MRI (β = 0.384, p < 0.001) and T1-weighted MRI (β = 0.369, p < 0.001) compared to CT.Conclusion.The VIBE-MRI sequence was more sensitive than T1-weighted MRI in identifying erosive damage in the SIJ, especially in younger patients. This might be due to the ability of VIBE-MRI to identify structural changes in the cartilage that have not yet extended to the underlying bone, where CT seems to be superior.


Sign in / Sign up

Export Citation Format

Share Document