scholarly journals A new technique for numerical solution of 1D and 2D non-linear coupled Burgers’ equations by using cubic Uniform Algebraic Trigonometric (UAT) tension B-spline based differential quadrature method

Author(s):  
Mamta Kapoor ◽  
Varun Joshi
Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 453-463 ◽  
Author(s):  
Sumita Dahiya ◽  
Ramesh Chandra Mittal

AbstractThis paper employs a differential quadrature scheme for solving non-linear partial differential equations. Differential quadrature method (DQM), along with modified cubic B-spline basis, has been adopted to deal with three-dimensional non-linear Brusselator system, enzyme kinetics of Michaelis-Menten type problem and Burgers’ equation. The method has been tested efficiently to three-dimensional equations. Simple algorithm and minimal computational efforts are two of the major achievements of the scheme. Moreover, this methodology produces numerical solutions not only at the knot points but also at every point in the domain under consideration. Stability analysis has been done. The scheme provides convergent approximate solutions and handles different cases and is particularly beneficial to higher dimensional non-linear PDEs with irregularities in initial data or initial-boundary conditions that are discontinuous in nature, because of its capability of damping specious oscillations induced by high frequency components of solutions.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Vikas Kumar ◽  
Sukhveer Singh ◽  
Mehmet Emir Koksal

In this study, a new composite algorithm with the help of the finite difference and the modified cubic trigonometric B-spline differential quadrature method is developed. The developed method was applied to two-dimensional coupled Burgers’ equation with initial and Dirichlet boundary conditions for computational modeling. The established algorithm is better than the traditional differential quadrature algorithm proposed in literature due to more smoothness of cubic trigonometric B-spline functions. In the development of the algorithm, the first step is semidiscretization in time with the forward finite difference method. Furthermore, the obtained system is fully discretized by the modified cubic trigonometric B-spline differential quadrature method. Finally, we obtain coupled Lyapunov systems of linear equations, which are analyzed by the MATLAB solver for the system. Moreover, comparative study of these solutions with the numerical and exact solutions which are appeared in the literature is also discussed. Finally, it is found that there is good suitability between exact solutions and numerical solutions obtained by the developed composite algorithm. The technique can be extended for various multidimensional Burgers’ equations after some modifications.


Sign in / Sign up

Export Citation Format

Share Document