A fuzzy nonlinear programming approach for planning energy-efficient wafer fabrication factories

2020 ◽  
Vol 95 ◽  
pp. 106506
Author(s):  
Yi-Chi Wang ◽  
Min-Chi Chiu ◽  
Toly Chen
2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Horng-Ren Tsai ◽  
Toly Chen

In theory, a scheduling problem can be formulated as a mathematical programming problem. In practice, dispatching rules are considered to be a more practical method of scheduling. However, the combination of mathematical programming and fuzzy dispatching rule has rarely been discussed in the literature. In this study, a fuzzy nonlinear programming (FNLP) approach is proposed for optimizing the scheduling performance of a four-factor fluctuation smoothing rule in a wafer fabrication factory. The proposed methodology considers the uncertainty in the remaining cycle time of a job and optimizes a fuzzy four-factor fluctuation-smoothing rule to sequence the jobs in front of each machine. The fuzzy four-factor fluctuation-smoothing rule has five adjustable parameters, the optimization of which results in an FNLP problem. The FNLP problem can be converted into an equivalent nonlinear programming (NLP) problem to be solved. The performance of the proposed methodology has been evaluated with a series of production simulation experiments; these experiments provide sufficient evidence to support the advantages of the proposed method over some existing scheduling methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Toly Chen ◽  
Yi-Chi Wang

This study proposes a multiobjective fuzzy nonlinear programming (MOFNP) approach to enhance the long-term yield competitiveness of a semiconductor manufacturing factory. By modeling the long-term competitiveness of every product in a semiconductor manufacturing plant with the fuzzy correlation coefficient (FCC) between time and instantaneous competitiveness, the proposed model considers the various viewpoints when interpreting the overall competitiveness of the semiconductor manufacturing plant in the long-term. All noninferior solutions of the MOFNP solutions are then derived using a systematic procedure. A real example is employed to illustrate the applicability of the proposed methodology.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Chao Ma ◽  
Wei Dong Liu ◽  
Zhi Ying Tu ◽  
Zhong Jie Wang ◽  
Xiao Fei Xu

The “transboundary”, an emerging phenomenon in the Internet service ecosystem, is leading to the flourishing of innovative services. A transboundary service incorporates services, resources, and technologies from multiple domains into its business to create a particular competitive advantage and unique user experiences. It is difficult to comprehensively consider all the constraints from multiple domains to precisely design the nonfunctional characteristics of transboundary services, such as quality attributes and capability attributes. We propose a two-phase quality design method for transboundary services called value quality deployment-quality capability deployment (VQD-QCD) based on quality function deployment (QFD). Given the restrictions of transboundary services, VQD-QCD translates the value expectations of multiple stakeholders into an optimal configuration for global quality parameters (GQPs), local quality parameters, and capability parameters. Details of VQD are illustrated. Considering the inherent vagueness and uncertainty of relationships between value expectations and GQPs, and among GQPs, fuzzy least absolute regression and fuzzy nonlinear programming methods are incorporated into QFD to identify the quantitative relations between value indicators and GQPs, and among GQPs, and obtain an optimal configuration scheme for GQPs. Usability of the proposed method is validated through a case study on the “DiDi mobile transportation service”, which is a representative transboundary service in China. Compared with the current method, which is inaccurate and inefficient because its translation between value expectations and relevant quality and capability parameters is artificial and subjective, the proposed method integrates fuzzy least absolute regression and fuzzy nonlinear programming methods into QFD, which facilitate transboundary service designers to precisely and efficiently design the quality and capability characteristics of innovative services in the manner of semiautomatisation, which promotes the innovative design of transboundary services.


Sign in / Sign up

Export Citation Format

Share Document