Genetic and phylogenetic analysis of the honey bee sacbrood virus from jiangxi isolates

2022 ◽  
Vol 25 (1) ◽  
pp. 101847
Author(s):  
Yaping Meng ◽  
Xinyue Yu ◽  
Qiang Huang ◽  
Lizhen Zhang ◽  
Xiaobo Wu ◽  
...  
2019 ◽  
Vol 112 (5) ◽  
pp. 2055-2066 ◽  
Author(s):  
Chong-Yu Ko ◽  
Zong-Lin Chiang ◽  
Ruo-Jyun Liao ◽  
Zih-Ting Chang ◽  
Ju-Chun Chang ◽  
...  

AbstractSince 2016, Apis cerana sacbrood virus (AcSBV) has been recorded in Taiwan. It is epizootic in Apis cerana (Hymenoptera: Apidae) and causing serious loss of A. cerana. Herein, we performed a long-term survey of AcSBV prevalence in the populations of A. cerana in Northern Taiwan from January 2017 to July 2018. The surveillance of AcSBV prevalence in A. mellifera (Hymenoptera: Apidae) populations was starting and further confirmed by sequencing since April 2017; thus, these data were also included in this survey. In our survey, the average prevalence rates of AcSBV were 72 and 53% in A. cerana and A. mellifera, respectively, in 2017, which decreased to 45 and 27% in 2018. For the spatial analysis of AcSBV in two honey bee populations, Hsinchu showed the highest prevalence, followed by New Taipei, Yilan, Taipei, and Keelung, suggesting that AcSBV might have come from the southern part of Taiwan. Interestingly, the AcSBV prevalence rates from A. cerana and A. mellifera cocultured apiaries gradually synchronized. The result of phylogenetic analysis and comparison of the annual AcSBV prevalence in A. cerana-only, A. mellifera-only, and A. cerana/A. mellifera cocultured sample sites indicate cross-infection between A. cerana and A. mellifera; however, AcSBV may lose the advantage of virulence in A. mellifera. The evidence suggested that the transmission of AcSBV might occur among these two honey bee species in the field. Therefore, A. mellifera may serve as a guard species to monitor AcSBV in A. cerana, but the cross-infection still needs to be surveyed.


VirusDisease ◽  
2018 ◽  
Vol 29 (4) ◽  
pp. 453-460 ◽  
Author(s):  
R. Aruna ◽  
M. R. Srinivasan ◽  
V. Balasubramanian ◽  
R. Selvarajan

2019 ◽  
Vol 43 (4) ◽  
pp. 551-554 ◽  
Author(s):  
Gülnur KALAYCI ◽  
Abdurrahman Anıl ÇAĞIRGAN ◽  
Kemal PEKMEZ ◽  
Buket ÖZKAN ◽  
Murat KAPLAN

2017 ◽  
Vol 146 ◽  
pp. 36-40 ◽  
Author(s):  
Wei-Fone Huang ◽  
Shahid Mehmood ◽  
Shaokang Huang ◽  
Yue-Wen Chen ◽  
Chong-Yu Ko ◽  
...  

Virology ◽  
1964 ◽  
Vol 23 (3) ◽  
pp. 425-429 ◽  
Author(s):  
L. Bailey ◽  
A.J. Gibbs ◽  
R.D. Woods

2001 ◽  
Vol 8 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Elvira Grabensteiner ◽  
Wolfgang Ritter ◽  
Michael J. Carter ◽  
Sean Davison ◽  
Hermann Pechhacker ◽  
...  

ABSTRACT Sacbrood virus (SBV) infects larvae of the honeybee (Apis mellifera), resulting in failure to pupate and death. Until now, identification of viruses in honeybee infections has been based on traditional methods such as electron microscopy, immunodiffusion, and enzyme-linked immunosorbent assay. Culture cannot be used because no honeybee cell lines are available. These techniques are low in sensitivity and specificity. However, the complete nucleotide sequence of SBV has recently been determined, and with these data, we now report a reverse transcription-PCR (RT-PCR) test for the direct, rapid, and sensitive detection of these viruses. RT-PCR was used to target five different areas of the SBV genome using infected honeybees and larvae originating from geographically distinct regions. The RT-PCR assay proved to be a rapid, specific, and sensitive diagnostic tool for the direct detection of SBV nucleic acid in samples of infected honeybees and brood regardless of geographic origin. The amplification products were sequenced, and phylogenetic analysis suggested the existence of at least three distinct genotypes of SBV.


2021 ◽  
Vol 1 ◽  
Author(s):  
Lina Zhang ◽  
Yanchun Deng ◽  
Hongxia Zhao ◽  
Ming Zhang ◽  
Chunsheng Hou

Honey bees play a vital role in providing pollination services for agricultural crops and wild flowering plants. However, the spillover risk of their pathogens to other pollinators or wild insects is becoming a cause for concern. There is some evidence that stingless bees can carry honey bee viruses, but little is known about the presence of honey bee viruses in stingless bees in China. Here, we investigate the occurrence of major honey bee pathogens including bacteria, fungi, and viruses in stingless bees (Apidae: sp.). Our results show that the stingless bees (Apidae: sp.) were mainly infected with DWV-A, but no DWV-B and DWV-C. Phylogenetic analysis on fragments of lp, RdRp, and VP3 of DWV-A indicated that genetic variation in VP3 might an important indicator for host-specific viruses, but it requires further study. Our results indicated that DWV-A is not only the major strain of virus currently circulating in managed bee colonies in China and globally, but in stingless bee species as a whole.


2016 ◽  
Vol 154 (2-3) ◽  
pp. 258-262 ◽  
Author(s):  
C. Park ◽  
H.S. Kang ◽  
J. Jeong ◽  
I. Kang ◽  
K. Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document