scholarly journals Occurrence and Phylogenetic Analysis of DWV in Stingless Bee (Apidae sp.) in China: A Case Report

2021 ◽  
Vol 1 ◽  
Author(s):  
Lina Zhang ◽  
Yanchun Deng ◽  
Hongxia Zhao ◽  
Ming Zhang ◽  
Chunsheng Hou

Honey bees play a vital role in providing pollination services for agricultural crops and wild flowering plants. However, the spillover risk of their pathogens to other pollinators or wild insects is becoming a cause for concern. There is some evidence that stingless bees can carry honey bee viruses, but little is known about the presence of honey bee viruses in stingless bees in China. Here, we investigate the occurrence of major honey bee pathogens including bacteria, fungi, and viruses in stingless bees (Apidae: sp.). Our results show that the stingless bees (Apidae: sp.) were mainly infected with DWV-A, but no DWV-B and DWV-C. Phylogenetic analysis on fragments of lp, RdRp, and VP3 of DWV-A indicated that genetic variation in VP3 might an important indicator for host-specific viruses, but it requires further study. Our results indicated that DWV-A is not only the major strain of virus currently circulating in managed bee colonies in China and globally, but in stingless bee species as a whole.

2018 ◽  
Vol 51 (1) ◽  
pp. 101-107
Author(s):  
H.F. Abou-Shaara

Abstract Honey bees are used in intensive way in agriculture due to their vital role in pollination of crops. Moreover, there are many valuable products from the bee colonies. Unfortunately, there are many enemies to honey bees. These enemies belong to various taxonomic ranks, including birds, insects and mites. Serious damages can be caused to honey bee colonies by these enemies. The sophisticated evolutionary relationships between honey bees and their enemies are not well investigated. In this study, phylogenetic trees between honey bees and their enemies were constructed based on the mtDNA and the COX1. The constructed trees reflected the evolutionary relationships according to behavior and taxonomical characters based on mtDNA and COX1, respectively. Predators, cavity-nesting bees, and parasites were separated than each other based on the first 1000 bases of the mtDNA. Insects were separated than mites and birds, in line with the classification of each organism based on the COX1.


2020 ◽  
Vol 152 (5) ◽  
pp. 622-645
Author(s):  
Claude Dufour ◽  
Valérie Fournier ◽  
Pierre Giovenazzo

AbstractThe growth of the commercial pollination industry raises important concerns regarding honey bee (Apis mellifera Linnaeus; Hymenoptera: Apidae) health and development. While providing such services, honey bees are often exposed to undiversified pollen sources that may contribute to nutritional deficiencies, notably in protein and amino acids. To understand how honey bees are affected during provision of pollination services, we compared honey bee colonies that pollinated lowbush blueberry (Vaccinium angustifolium Aiton; Ericaceae) and/or cranberry (Vaccinium macrocarpon Aiton; Ericaceae) crops (management strategies) with control colonies in a diversified farmland environment. We identified the floral species of pollen collected by honey bee colonies in those crops compared to pollen collected by control colonies. We also analysed the protein and essential amino acid content of collected pollen and bee bread and measured the nutritional impact of pollination services on honey bee colonies. We found that honey bees providing blueberry and/or cranberry pollination services are exposed to a less diversified pollen diet than colonies located in a farmland environment, especially in a cranberry field. There was a significantly lower proportion of crude protein content in collected and stored pollen during provision of blueberry pollination services, which led to a smaller brood population. Many nutritional deficiencies were measured with regards to essential amino acids.


2010 ◽  
Vol 142 (6) ◽  
pp. 584-588 ◽  
Author(s):  
Geoffrey R. Williams ◽  
Krista Head ◽  
Karen L. Burgher-MacLellan ◽  
Richard E.L. Rogers ◽  
Dave Shutler

AbstractWestern honey bees, Apis mellifera L. (Hymenoptera: Apidae), occur in nearly every region inhabited by man because they provide valuable honey, wax, and pollination services. Many commercial honey bee operations are plagued by economically important parasites; however, beekeepers on the island of Newfoundland, Canada, are in a unique position because of the province of Newfoundland and Labrador’s strict import regulations and geographic isolation. We surveyed about 25% of the island’s approximately 100 managed honey bee colonies. The parasitic mites Varroa destructor Anderson and Trueman (Acari: Varroidae) and Acarapis woodi (Rennie) (Acari: Tarsonemidae) were not detected, whereas Nosema spp. microsporidia were detected in two of four beekeeping operations and in 11 of 23 (48%) colonies (intensity = 482 609 ± 1199 489 (mean ± SD); median intensity = 0). Because V. destructor and A. woodi are important pests that typically require chemical treatments, beekeepers on the island of Newfoundland may be uniquely positioned to market organic honey bee products from colonies that could also be a source of mite-naïve bees for research.


1986 ◽  
Vol 2 (2) ◽  
pp. 97-111 ◽  
Author(s):  
David W. Roubik ◽  
J. Enrique Moreno ◽  
Carlos Vergara ◽  
Dieter Wittmann

ABSTRACTBee colonies in lowland forest in Panama were monitored for pollen and nectar harvest, pollen species utilization and nectar quality and quantity per returning forager. Despite sharing most pollen resources and nectar of the same quality with 20 introduced colonies of the African honey bee (Apis mellifera), native stingless bees of 12 species were largely unaffected by its activity. Pollen and nectar harvested by the honey bees were 10–200 times that procured by 17 stingless bee colonies. This discrepancy in total harvest and general lack of competitive effect is explained by a honey bee foraging area over 10 times that of the native bees, and apparent foraging shifts to escape competition with honey bees, thus reduced potential overlap in foraging sites.Seven cases of direct resource competition for pollen or nectar were documented, out of 31 tests. Rare periods of intensive harvest were diminished by competing African honey bees. Such harvest peaks lasted for only a few hours in 13 days of observation. Despite average duration of 4% foraging time for each species, peaks included as much as 51% total harvest. Calculations based upon colony populations, food stores and flight range show that if African honey bees persist at a density of 1 colony per km2, colonies of some stingless bee species may disappear after 10 years. Their chances of escaping food competition by taxonomic specialization on flowers seem slight.


2019 ◽  
Vol 112 (6) ◽  
pp. 2993-2996 ◽  
Author(s):  
Robyn Underwood ◽  
Brian Breeman ◽  
Joseph Benton ◽  
Jason Bielski ◽  
Julie Palkendo ◽  
...  

Abstract The spotted lanternfly, Lycorma delicatula, is an introduced plant hopper that causes significant damage to host plants in the United States. Because of its affinity for tree of heaven, Ailanthus altissima, control efforts have focused on the use of the systemic insecticide, dinotefuran, in designated trap trees. There is concern about exposure to this pesticide by non-target species, especially honey bees, Apis mellifera, via lanternfly honeydew. Therefore, honey bee colonies were established in areas of high densities of trap trees and samples of honey, bees, and beeswax were collected in May, July, and October of 2017 for analysis. Samples were extracted by the QuEChERS method and analyzed using high-performance liquid chromatography with tandem mass spectrometry to determine the presence and quantity of dinotefuran. Additionally, honeydew from lanternflies was analyzed for dinotefuran and informal observations of trap tree visitors were made. None of the worker bee, wax, or honey samples indicated detectable levels of dinotefuran; however, honeydew samples collected did contain dinotefuran above the detection limit with amounts ranging from 3 to 100 ng per sample. The lack of dinotefuran in honey bee products matches the general absence of honey bees at trap trees in informal observations.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e36285 ◽  
Author(s):  
Coby van Dooremalen ◽  
Lonne Gerritsen ◽  
Bram Cornelissen ◽  
Jozef J. M. van der Steen ◽  
Frank van Langevelde ◽  
...  

Author(s):  
J. L. Kevill ◽  
K. C. Stainton ◽  
D. C. Schroeder ◽  
S. J. Martin

AbstractDeformed wing virus (DWV) has been linked to the global decline of honey bees. DWV exists as three master variants (DWV-A, DWV-B, and DWV-C), each with differing outcomes for the honey bee host. Research in the USA showed a shift from DWV-A to DWV-B between 2010 to 2016 in honey bee colonies. Likewise, in the UK, a small study in 2007 found only DWV-A, whereas in 2016, DWV-B was the most prevalent variant. This suggests a shift from DWV-A to DWV-B might have occurred in the UK between 2007 and 2016. To investigate this further, data from samples collected in 2009/10 (n = 46) were compared to existing data from 2016 (n = 42). These samples also allowed a comparison of DWV variants between Varroa-untreated (feral) and Varroa-treated (managed) colonies. The results revealed that, in the UK, DWV-A was far more prevalent in 2009/10 (87%) than in 2016 (43%). In contrast, DWV-B was less prevalent in 2009/10 (76%) than in 2016 (93%). Regardless if colonies had been treated for Varroa (managed) or not (feral), the same trend from DWV-A to DWV-B occurred. Overall, the results reveal a decrease in DWV-A and an increase in DWV-B in UK colonies.


Apidologie ◽  
2019 ◽  
Vol 51 (2) ◽  
pp. 180-200 ◽  
Author(s):  
Sara Rodney ◽  
Vincent J. Kramer

AbstractRecent concerns regarding potential effects of pesticides on pollinators have prompted regulatory agencies to estimate dietary ingestion rates for honey bees (Apis mellifera). The task is difficult because of the complex caste and food storage systems in honey bee colonies. Considerable data on the nutrition and energetics of honey bees have recently been collated. These data were used to parameterize a probabilistic model estimating nectar requirements of nectar foragers. Median estimates were more than 6× lower than the recommended median value from the North American government agencies, of 292 mg nectar/bee/day. The distribution of estimates had much greater variability than those of the agencies. The differences are due primarily to the disparate assumptions regarding how much time nectar foragers spend flying and foraging. Risk assessors considering honey bee dietary exposure should take account of current and emerging data providing insight into nectar forager dietary requirements, foraging activity, and feeding behavior.


1999 ◽  
Vol 22 (3) ◽  
pp. 321-323 ◽  
Author(s):  
Geraldo Moretto ◽  
Leonidas João de Mello Jr.

Different levels of infestation with the mite Varroa jacobsoni have been observed in the various Apis mellifera races. In general, bees of European races are more susceptible to the mite than African honey bees and their hybrids. In Brazil honey bee colonies are not treated against the mite, though apparently both climate and bee race influence the mite infestation. Six mixed colonies were made with Italian and Africanized honey bees. The percentage infestation by this parasite was found to be significantly lower in adult Africanized (1.69 ± 0.44) than Italian bees (2.79 ± 0.65). This ratio was similar to that found in Mexico, even though the Africanized bees tested there had not been in contact with varroa, compared to more than 20 years of the coexistence in Brazil. However, mean mite infestation in Brazil on both kinds of bees was only about a third of that found in Mexico.


2012 ◽  
Vol 24 (8) ◽  
pp. 1079 ◽  
Author(s):  
Brandon K. Hopkins ◽  
Charles Herr ◽  
Walter S. Sheppard

Much of the world’s food production is dependent on honey bees for pollination, and expanding food production will further increase the demand for managed pollination services. Apiculturists outside the native range of the honey bee, in the Americas, Australia and eastern Asia, have used only a few of the 27 described subspecies of honey bees (Apis mellifera) for beekeeping purposes. Within the endemic ranges of a particular subspecies, hybridisation can threaten native subspecies when local beekeepers import and propagate non-native honey bees. For many threatened species, cryopreserved germplasm can provide a resource for the preservation of diversity and recovery of endangered populations. However, although instrumental insemination of queen honey bees is well established, the absence of an effective means to cryopreserve honey bee semen has limited the success of efforts to preserve genetic diversity within the species or to develop repositories of honey bee germplasm for breeding purposes. Herein we report that some queens inseminated with cryopreserved semen were capable of producing a substantial number of fertilised offspring. These diploid female larvae were used to produce two additional sequential generations of new queens, which were then back-crossed to the same stock of frozen semen. Our results demonstrate the ability to produce queens using cryopreserved honey bee spermatozoa and the potential for the establishment of a honey bee genetic repository.


Sign in / Sign up

Export Citation Format

Share Document