scholarly journals Peer Review #1 of "Genetic and phylogenetic analysis of Chinese sacbrood virus isolates from Apis mellifera (v0.2)"

Author(s):  
EV Ryabov
2019 ◽  
Vol 112 (5) ◽  
pp. 2055-2066 ◽  
Author(s):  
Chong-Yu Ko ◽  
Zong-Lin Chiang ◽  
Ruo-Jyun Liao ◽  
Zih-Ting Chang ◽  
Ju-Chun Chang ◽  
...  

AbstractSince 2016, Apis cerana sacbrood virus (AcSBV) has been recorded in Taiwan. It is epizootic in Apis cerana (Hymenoptera: Apidae) and causing serious loss of A. cerana. Herein, we performed a long-term survey of AcSBV prevalence in the populations of A. cerana in Northern Taiwan from January 2017 to July 2018. The surveillance of AcSBV prevalence in A. mellifera (Hymenoptera: Apidae) populations was starting and further confirmed by sequencing since April 2017; thus, these data were also included in this survey. In our survey, the average prevalence rates of AcSBV were 72 and 53% in A. cerana and A. mellifera, respectively, in 2017, which decreased to 45 and 27% in 2018. For the spatial analysis of AcSBV in two honey bee populations, Hsinchu showed the highest prevalence, followed by New Taipei, Yilan, Taipei, and Keelung, suggesting that AcSBV might have come from the southern part of Taiwan. Interestingly, the AcSBV prevalence rates from A. cerana and A. mellifera cocultured apiaries gradually synchronized. The result of phylogenetic analysis and comparison of the annual AcSBV prevalence in A. cerana-only, A. mellifera-only, and A. cerana/A. mellifera cocultured sample sites indicate cross-infection between A. cerana and A. mellifera; however, AcSBV may lose the advantage of virulence in A. mellifera. The evidence suggested that the transmission of AcSBV might occur among these two honey bee species in the field. Therefore, A. mellifera may serve as a guard species to monitor AcSBV in A. cerana, but the cross-infection still needs to be surveyed.


2001 ◽  
Vol 8 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Elvira Grabensteiner ◽  
Wolfgang Ritter ◽  
Michael J. Carter ◽  
Sean Davison ◽  
Hermann Pechhacker ◽  
...  

ABSTRACT Sacbrood virus (SBV) infects larvae of the honeybee (Apis mellifera), resulting in failure to pupate and death. Until now, identification of viruses in honeybee infections has been based on traditional methods such as electron microscopy, immunodiffusion, and enzyme-linked immunosorbent assay. Culture cannot be used because no honeybee cell lines are available. These techniques are low in sensitivity and specificity. However, the complete nucleotide sequence of SBV has recently been determined, and with these data, we now report a reverse transcription-PCR (RT-PCR) test for the direct, rapid, and sensitive detection of these viruses. RT-PCR was used to target five different areas of the SBV genome using infected honeybees and larvae originating from geographically distinct regions. The RT-PCR assay proved to be a rapid, specific, and sensitive diagnostic tool for the direct detection of SBV nucleic acid in samples of infected honeybees and brood regardless of geographic origin. The amplification products were sequenced, and phylogenetic analysis suggested the existence of at least three distinct genotypes of SBV.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 61 ◽  
Author(s):  
Jianghong Li ◽  
Tingyun Wang ◽  
Jay Evans ◽  
Robyn Rose ◽  
Yazhou Zhao ◽  
...  

RNA viruses that contain single-stranded RNA genomes of positive sense make up the largest group of pathogens infecting honey bees. Sacbrood virus (SBV) is one of the most widely distributed honey bee viruses and infects the larvae of honey bees, resulting in failure to pupate and death. Among all of the viruses infecting honey bees, SBV has the greatest number of complete genomes isolated from both European honey bees Apis mellifera and Asian honey bees A. cerana worldwide. To enhance our understanding of the evolution and pathogenicity of SBV, in this study, we present the first report of whole genome sequences of two U.S. strains of SBV. The complete genome sequences of the two U.S. SBV strains were deposited in GenBank under accession numbers: MG545286.1 and MG545287.1. Both SBV strains show the typical genomic features of the Iflaviridae family. The phylogenetic analysis of the single polyprotein coding region of the U.S. strains, and other GenBank SBV submissions revealed that SBV strains split into two distinct lineages, possibly reflecting host affiliation. The phylogenetic analysis based on the 5′UTR revealed a monophyletic clade with the deep parts of the tree occupied by SBV strains from both A. cerane and A. mellifera, and the tips of branches of the tree occupied by SBV strains from A. mellifera. The study of the cold stress on the pathogenesis of the SBV infection showed that cold stress could have profound effects on sacbrood disease severity manifested by increased mortality of infected larvae. This result suggests that the high prevalence of sacbrood disease in early spring may be due to the fluctuating temperatures during the season. This study will contribute to a better understanding of the evolution and pathogenesis of SBV infection in honey bees, and have important epidemiological relevance.


2012 ◽  
Vol 157 (1-2) ◽  
pp. 32-40 ◽  
Author(s):  
Se-Eun Choe ◽  
Thuy Thi-Dieu Nguyen ◽  
Bang-Hun Hyun ◽  
Jin-Hyeong Noh ◽  
Hee-Soo Lee ◽  
...  

2004 ◽  
Vol 73 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Silvia Utz ◽  
Jean-Luc Richard ◽  
Selja Capaul ◽  
Hans C. Matter ◽  
Meri Gorgievski Hrisoho ◽  
...  

2009 ◽  
Vol 75 (24) ◽  
pp. 7862-7865 ◽  
Author(s):  
Anna Welch ◽  
Francis Drummond ◽  
Sunil Tewari ◽  
Anne Averill ◽  
John P. Burand

ABSTRACT Migratory and local bees in Massachusetts were analyzed for seven viruses. Three were detected: black queen cell virus (BQCV), deformed wing virus (DWV), and sacbrood virus (SBV). DWV was most common, followed closely by BQCV and then by SBV. BQCV and SBV were present at significantly higher rates in the migratory bees assayed, bringing into question the impact that these bees have on the health of local bee populations.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Gözde Erkiş-Güngör ◽  
Bayram Çevik

The presence of Citrus tristeza virus (CTV) in Turkey has been known since the 1960s and the virus was detected in all citrus growing regions of the country. Even though serological and biological characteristics of CTV have been studied since the 1980s, molecular characteristics of CTV isolates have not been studied to date in Turkey. In this study, molecular characteristics of 15 CTV isolates collected from different citrus growing regions of Turkey were determined by amplification, cloning, and sequencing of their major coat protein (CP) genes. The sequence analysis showed that the CP genes were highly conserved among Turkish isolates. However, isolates from different regions showed more genetic variation than isolates from the same region. Turkish isolates were clustered into three phylogenetic groups showing no association with geographical origins, host, or symptoms induced in indicator plants. Phylogenetic analysis of Turkish isolates with isolates from different citrus growing regions of the world including well-characterized type isolates of previously established strain specific groups revealed that some Turkish isolates were closely related to severe quick decline or stem pitting isolates. The results demonstrated that although CTV isolates from Turkey are considered biologically mild, majority of them contain severe components potentially causing quick decline or stem pitting.


Sign in / Sign up

Export Citation Format

Share Document