The Solar Wind interactions with Lunar Magnetic Anomalies: A case study of the Chang’E-2 plasma data near the Serenitatis antipode

2012 ◽  
Vol 50 (12) ◽  
pp. 1600-1606 ◽  
Author(s):  
X.-Q. Wang ◽  
J. Cui ◽  
X.-D. Wang ◽  
J.-J. Liu ◽  
H.-B. Zhang ◽  
...  
2007 ◽  
Vol 25 (3) ◽  
pp. 785-799 ◽  
Author(s):  
A. Kis ◽  
M. Scholer ◽  
B. Klecker ◽  
H. Kucharek ◽  
E. A. Lucek ◽  
...  

Abstract. Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB) ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.


2004 ◽  
Vol 22 (12) ◽  
pp. 4143-4151 ◽  
Author(s):  
D. G. Sibeck ◽  
K. Kudela ◽  
T. Mukai ◽  
Z. Nemecek ◽  
J. Safrankova

Abstract. We present a case study of Geotail, Interball-1, IMP-8, and Wind observations of density and magnetic field strength cavities excavated by the enhanced pressures associated with bursts of energetic ions in the foreshock. Consistent with theoretical predictions, the pressure of the energetic ions diminishes rapidly with upstream distance due to a decrease in the flux of energetic ions and a transition from near-isotropic to streaming pitch angle distributions. Consequently, the cavities can only be observed immediately upstream from the bow shock. A comparison of conditions upstream from the pre- and post-noon bow shock demonstrates that foreshock cavities introduce perturbations into the oncoming solar wind flow with dimensions smaller than those of the magnetosphere. Dayside geosynchronous magnetic field strength variations observed by GOES-8 do not track the density variations seen by any of the spacecraft upstream from the bow shock in a one-to-one manner, indicating that none of these spacecraft observed the precise sequence of density variations that actually struck the subsolar magnetopause. Key words. Interplanetary physics (energetic particles; planetary bow shocks) – Magnetospheric physics (solar wind-magnetosphere interactions)


JETP Letters ◽  
2020 ◽  
Vol 111 (6) ◽  
pp. 299-305
Author(s):  
M. S. Rumenskikh ◽  
A. A. Chibranov ◽  
M. A. Efimov ◽  
A. G. Berezutskii ◽  
V. G. Posukh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document