scholarly journals Data pipeline architecture and development for VELC onboard Space Solar Mission AdityaL1

Author(s):  
Jagdev Singh ◽  
B. Raghavendra Prasad ◽  
Chavali Sumana ◽  
Amit Kumar ◽  
Varun Kumar ◽  
...  
Author(s):  
Chinmaya Dehury ◽  
Pelle Jakovits ◽  
Satish Narayana Srirama ◽  
Vasilis Tountopoulos ◽  
Giorgos Giotis

CIRP Annals ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 385-388 ◽  
Author(s):  
Moneer Helu ◽  
Timothy Sprock ◽  
Daniel Hartenstine ◽  
Rishabh Venketesh ◽  
William Sobel

2021 ◽  
Author(s):  
Maximilian Georg Schuberth ◽  
Håkon Sunde Bakka ◽  
Claire Emma Birnie ◽  
Stefan Dümmong ◽  
Kjetil Eik Haavik ◽  
...  

Abstract Fiber Optic (FO) sensing capabilities for downhole monitoring include, among other techniques, Distributed Temperature Sensing (DTS) and Distributed Acoustic Sensing (DAS). The appeal of DTS and DAS data is based on its high temporal and spatial sampling, allowing for very fine localization of processes in a wellbore. Furthermore, the broad frequency spectrum that especially DAS data is acquired with, enables observations, ranging from more continuous effects like oil flow, to more distinct effects like opening and closing of valves. Due to the high data volume of hundreds of Gb per well per hour, DAS data has traditionally been acquired acquisition-based, where data is recorded for a limited amount of time and processed at a later point in time. This limits the decision-making capability based on this data as reacting to events is only possible long after the event occurred. Equinor has addressed these decision-making shortcomings by building a real-time streaming solution for transferring, processing, and interpretation of its FO data at the Johan Sverdrup field in the North Sea. The streaming solution for FO data consists of offshore interrogators streaming raw DAS and DTS data via a dedicated bandwidth to an onshore processing cluster. There, DAS data is transformed into FO feature data, e.g., Frequency Band Energies, which are heavily decimated versions of the raw data; allowing insight extraction, while significantly reducing data volumes. DTS and DAS FO feature data are then streamed to a custom-made, cloud-based visualization and integration platform. This cloud-based platform allows efficient inspection of large data sets, control and evaluation of applications based on these data, and sharing of FO data within the Johan Sverdrup asset. During the last year, this FO data streaming pipeline has processed several tens of PB of FO data, monitoring a range of well operations and processes. Qualitatively, the benefits and potential of the real-time data acquisitions have been illustrated by providing a greater understanding of current well conditions and processes. Alongside the FO data pipeline, multiple prototype applications have been developed for automated monitoring of Gas Lift Valves, Safety Valve operations, Gas Lift rate estimation, and monitoring production start-up, all providing insights in real-time. For certain use cases, such as monitoring production start-up, the FO data provides a previously non-existent monitoring solution. In this paper, we will discuss in detail the FO data pipeline architecture from-platform-to-cloud, illustrate several data examples, and discuss the way-forward for "real-time" FO data analytics.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Angelina Pramana Thenata

The rapid development of information has made online news increasingly needed. Online news attracts readers' attention by providing convenience and speed in presenting news from various fields. However, the large amount (volume) of online news that spreads in a short time (velocity) and the public's need to consume news in various references (variety) can affect people's lives. Therefore, the government as the regulator and news agencies need to monitor online news circulating. Based on these problems, the researcher proposes a data lake architectural design that is suitable for online news and can run in real-time. Data lakes can solve the main problems of Big Data (volume, velocity, variety). In proposing this data lake architecture, the researcher conducted a literature study and analyzed the flow of the data lake architecture according to online news. Furthermore, the researcher will use this architecture to combine and uniform the online news data structure from several online news channels and then stream it in real-time to fill the data lake. The results of using the data lake architecture for online news will be stored on MongoDB which functions as a database to store all data for both the short and long term. Finally, this data lake will be a means to accommodate, dive into, and analyze the circulating online news data. Keywords – Data Lake, Online News, Real-Time.


Sign in / Sign up

Export Citation Format

Share Document