gas lift
Recently Published Documents


TOTAL DOCUMENTS

1116
(FIVE YEARS 242)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Ruidong Zhao ◽  
Yizhen Sun ◽  
Hanjun Zhao ◽  
Junfeng Shi ◽  
Xishun Zhang ◽  
...  

Abstract With the development of deep-buried reservoirs and offshore fields, many prominent problems have been encountered by the use of conventional single artificial lift technologies, which can not meet the requirements of production and may cause frequent workovers. The combination of electrical submersible pump (ESP) and gas lift system (GL), taking advantages of flexible pump rate, relative long workover intervals and simple composition of tubing strings, is considered to be a better solution. The design of ESP-GL combined system is more complicated, referring to the distribution of pressure, temperature and viscosity fields of multiphase flow in the tubing string. In this article, based on the performance curves of lift devices and oil well, the design approach of the ESP-GL combined system based on nodal analysis is established with an example calculation. An optimization design approach of the combined system is then developed by intelligent algorithms, considering some key operating parameters, e.g. pump drainage rate, ESP depth, ESP stages, valve depth and gas injection rate, to find the optimal operating condition of the system. At the same time, the combined lifting system has been successfully applied in some pilot tests in China and Vietnam reporting to have production increments, which suggests a good potential for the application of the ESP-GL combined system in deep fields.


2021 ◽  
Author(s):  
Nasser AlAskari ◽  
Muhamad Zaki ◽  
Ahmed AlJanahi ◽  
Hamed AlGhadhban ◽  
Eyad Ali ◽  
...  

Abstract Objectives/Scope: The Magwa and Ostracod formations are tight and highly fractured carbonate reservoirs. At shallow depth (1600-1800 ft) and low stresses, wide, long and conductive propped fracture has proven to be the most effective stimulation technique for production enhancement. However, optimizing flow of the medium viscosity oil (17-27 API gravity) was a challenge both at initial phase (fracture fluid recovery and proppant flowback risks) and long-term (depletion, increasing water cut, emulsion tendency). Methods, Procedures, Process: Historically, due to shallow depth, low reservoir pressure and low GOR, the optimum artificial lift method for the wells completed in the Magwa and Ostracod reservoirs was always sucker-rod pumps (SRP) with more than 300 wells completed to date. In 2019 a pilot re-development project was initiated to unlock reservoir potential and enhance productivity by introducing a massive high-volume propped fracturing stimulation that increased production rates by several folds. Consequently, initial production rates and drawdown had to be modelled to ensure proppant pack stability. Long-term artificial lift (AL) design was optimized using developed workflow based on reservoir modelling, available post-fracturing well testing data and production history match. Results, Observations, Conclusions: Initial production results, in 16 vertical and slanted wells, were encouraging with an average 90 days production 4 to 8 times higher than of existing wells. However, the initial high gas volume and pressure is not favourable for SRP. In order to manage this, flexible AL approach was taken. Gas lift was preferred in the beginning and once the production falls below pre-defined PI and GOR, a conversion to SRP was done. Gas lift proved advantageous in handling solids such as residual proppant and in making sure that the well is free of solids before installing the pump. Continuous gas lift regime adjustments were taken to maximize drawdown. Periodical FBHP surveys were performed to calibrate the single well model for nodal analysis. However, there limitations were present in terms of maximizing the drawdown on one side and the high potential of forming GL induced emulsion on the other side. Horizontal wells with multi-stage fracturing are common field development method for such tight formations. However, in geological conditions of shallow and low temperature environment it represented a significant challenge to achieve fast and sufficient fracture fluid recovery by volume from multiple fractures without deteriorating the proppant pack stability. This paper outlines local solutions and a tailored workflow that were taken to optimize the production performance and give the brown field a second chance. Novel/Additive Information: Overcoming the different production challenges through AL is one of the keys to unlock the reservoir potential for full field re-development. The Magwa and Ostracod formations are unique for stimulation applications for shallow depth and range of reservoirs and fracture related uncertainties. An agile and flexible approach to AL allowed achieving the full technical potential of the wells and converted the project to a field development phase. The lessons learnt and resulting workflow demonstrate significant value in growing AL projects in tight and shallow formations globally.


2021 ◽  
Author(s):  
Mohammed Ahmed Al-Janabi ◽  
Omar F. Al-Fatlawi ◽  
Dhifaf J. Sadiq ◽  
Haider Abdulmuhsin Mahmood ◽  
Mustafa Alaulddin Al-Juboori

Abstract Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorithm to tackle the challenging task of optimally allocating the gas lift injection rate through numerical modeling and simulation studies to maximize the oil production of a Middle Eastern oil field with 20 production wells with limited amount of gas to be injected. The key objective of this study is to assess the performance of the wells of the field after applying gas lift as an artificial lift method and applying the genetic algorithm as an optimization algorithm while comparing the results of the network to the case of artificially lifted wells by utilizing ESP pumps to the network and to have a more accurate view on the practicability of applying the gas lift optimization technique. The comparison is based on different measures and sensitivity studies, reservoir pressure, and water cut sensitivity analysis are applied to allow the assessment of the performance of the wells in the network throughout the life of the field. To have a full and insight view an economic study and comparison was applied in this study to estimate the benefits of applying the gas lift method and the GA optimization technique while comparing the results to the case of the ESP pumps and the case of naturally flowing wells. The gas lift technique proved to have the ability to enhance the production of the oil field and the optimization process showed quite an enhancement in the task of maximizing the oil production rate while using the same amount of gas to be injected in the each well, the sensitivity analysis showed that the gas lift method is comparable to the other artificial lift method and it have an upper hand in handling the reservoir pressure reduction, and economically CAPEX of the gas lift were calculated to be able to assess the time to reach a profitable income by comparing the results of OPEX of gas lift the technique showed a profitable income higher than the cases of naturally flowing wells and the ESP pumps lifted wells. Additionally, the paper illustrated the genetic algorithm (GA) optimization model in a way that allowed it to be followed as a guide for the task of optimizing the gas injection rate for a network with a large number of wells and limited amount of gas to be injected.


2021 ◽  
Author(s):  
Subba Ramarao Rachapudi Venkata ◽  
Nagaraju Reddicharla ◽  
Shamma Saeed Alshehhi ◽  
Indra Utama ◽  
Saber Mubarak Al Nuimi ◽  
...  

Abstract Matured hydrocarbon fields are continuously deteriorating and selection of well interventions turn into critical task with an objective of achieving higher business value. Time consuming simulation models and classical decision-making approach making it difficult to rapidly identify the best underperforming, potential rig and rig-less candidates. Therefore, the objective of this paper is to demonstrate the automated solution with data driven machine learning (ML) & AI assisted workflows to prioritize the intervention opportunities that can deliver higher sustainable oil rate and profitability. The solution consists of establishing a customized database using inputs from various sources including production & completion data, flat files and simulation models. Automation of Data gathering along with technical and economical calculations were implemented to overcome the repetitive and less added value tasks. Second layer of solution includes configuration of tailor-made workflows to conduct the analysis of well performance, logs, output from simulation models (static reservoir model, well models) along with historical events. Further these workflows were combination of current best practices of an integrated assessment of subsurface opportunities through analytical computations along with machine learning driven techniques for ranking the well intervention opportunities with consideration of complexity in implementation. The automated process outcome is a comprehensive list of future well intervention candidates like well conversion to gas lift, water shutoff, stimulation and nitrogen kick-off opportunities. The opportunity ranking is completed with AI assisted supported scoring system that takes input from technical, financial and implementation risk scores. In addition, intuitive dashboards are built and tailored with the involvement of management and engineering departments to track the opportunity maturation process. The advisory system has been implemented and tested in a giant mature field with over 300 wells. The solution identified more techno-economical feasible opportunities within hours instead of weeks or months with reduced risk of failure resulting into an improved economic success rate. The first set of opportunities under implementation and expected a gain of 2.5MM$ with in first one year and expected to have reoccurring gains in subsequent years. The ranked opportunities are incorporated into the business plan, RMP plans and drilling & workover schedule in accordance to field development targets. This advisory system helps in maximizing the profitability and minimizing CAPEX and OPEX. This further maximizes utilization of production optimization models by 30%. Currently the system was implemented in one of ADNOC Onshore field and expected to be scaled to other fields based on consistent value creation. A hybrid approach of physics and machine learning based solution led to the development of automated workflows to identify and rank the inactive strings, well conversion to gas lift candidates & underperforming candidates resulting into successful cost optimization and production gain.


2021 ◽  
Author(s):  
Mohd Faizal Sedaralit ◽  
M Imran Iskandar Ibrahim ◽  
Azman Maam

Abstract A new way of utilizing access gas to power generation using newly developed technology named micro-turbine electric generator (mTEG). This technology is using relatively low gas flow rate: same region of gas-lift consumption between 0.3 – 0.5 MMscf/d of power generation for a minimum of one kilo Watt (1kW) per unit. The technology is classified under green category is due to no combustion process instead using pressure differential as the mechanism for power generation. Therefore, it supports PETRONAS’ net carbon zero program especially for unmanned platform operation. The mTEG is simple unit developed based on differential method by allowing gas to flow inside for rotation without combustion for power generation. Flow and pressure requirements are relatively low at 0.4 MMscf/d at 10 bar, respectively. One of gas supply sources to run the unit is coming from well or gas lift skid. Per skid of mTEG it can produce up-to 4 kW power. This technology helps to support unmanned platform operation to reduce operation cost and moreover, this technology is compact and superior than solar power scheme unit. Life cycle cost between the two technologies was indicated superior saving is possible for mTEG technology. Completed prototype model – integrated skid and in 2019 team managed secured full in-house development under prototyping and engineering centre unit located in PETRONAS Research Sdn. Bhd. (PRSB), Bangi. One of the technologies used to produce the mTEG unit is 3D printer with also available in PRSB. Passed factory acceptance test (FAT) in 2019 based on positive outcome of endurance test performance. Embarked detail engineering for installation of the skid and completed electrical and installation in 2020 and the skid unit is expecting to provide 1 kW power by end of this year at field E and upon completing the test, this technology will be able to benefits other operating unmanned platform or event small plant operation. The technology was designed for green power generation: operation greenification with no combustion elements instead provide flexibility for recycling of the gas and reuse for another means such as gas lift gas application to improved oil recovery.


2021 ◽  
Author(s):  
See Yee Teh ◽  
Ahmad Rizal A Rahman ◽  
Raja Sharifuddin Ahmad Raja Badrol ◽  
Mohd Hafis Muhammad Daud

Abstract Due to an increase in gas lift demand on an existing field in Sarawak, an existing Gas Lift Compressor (GLC) on the processing platform requires to be upgraded to meet incremental oil production requirement. These sets of compressors consist of 2x100% reciprocating compressors that were designed for 1.5 MMscfd each, with discharge pressure of 55.1 barg (800psig). The gas from these compressors is used mainly for gas lift at the processing platform as well as gas lift, instrument gas and utility gas at adjacent wellhead platforms. From the Conceptual Study, the existing compressors are not able to be retrofit for upgrade and is to be replaced with 2 × 100 % new gas engine driven compressor that capable of delivery 3.0 MMscfd of compressed gas each. During the engineering stage of GLC package, Skid Dynamic Analysis has been carried out to evaluate the GLC skid structural design due to the operating dynamic load cases. The study recommended that the skid to be welded to the platform where the compressor is located to prevent the risk of high vibration. With the recommendation from Contractor's study, project team proceeded to carry out Structural Dynamic Analysis to assess the dynamic effect of the GLC skids to the platform deck. The Finite Element Analysis (FEA) results revealed that there are several modal modes mainly at the drilling deck and extension deck non-compliance to PTS guideline. Structural Dynamic Modification (SDM) and optimization was performed to dynamically stiffens the structures to shift the modal modes away from the operating range to fulfil PTS criteria. However, the SDM results was still unable to comply thus the need of Anti-Vibration Mounts (AVMs) is considered. Prior to application of AVMs, Structural Forced Response Analysis needs to be carried out to evaluate the risk of the system and confirm the requirement of the AVMs. Without the forced response analysis, the effect of AVMs, locations and numbers of AVMs cannot be addressed during the design study. This paper will discuss the issues concerning vibration from reciprocating compressors upgrade on an existing platform, changes in the existing operating and design philosophy, challenges in addressing compressor installation and utilization of AVM from the perspective of Project Team. The paper will also provide key lessons learn and recommendation for future considerations in Compressor upgrades on existing facilities from a Structural Engineering point of view. The project is currently at its detail design finalization and installation is expected to be completed by November 2021.


2021 ◽  
Author(s):  
M Haziq M Ghazali ◽  
M Rizwan Rozlan ◽  
M Farris Bakar ◽  
M Faizatulizuddin Ishak ◽  
Orient Balbir Samuel ◽  
...  

Abstract PETRONAS completed well H-X on B field in Malaysia with a digital intelligent artificial lift (DIAL) gas lift production optimization system. This DIAL installation represents the first ever successful installation of the technology in an Offshore well for Dual String production. This paper provides complete details of the installation planning and operational process undertaken to achieve this milestone. DIAL is a unique technology that enhances the efficiency of gas lift production. Downhole monitoring of production parameters informs remote surface-controlled adjustment of gas lift valves. This enables automation of production optimization removing the need for well intervention. This paper focusses on a well completed in November 2020, the fourth well to be installed with the DIAL technology across PETRONAS Assets. The authors will provide details of the well and the installation phases: system design, pre-job preparations, improvements implementation, run in hole and surface hook-up. For each phase, challenges encountered, and lessons learned will be listed together with observed benefits. DIAL introduces a paradigm shift in design, installation and operation of gas lifted wells. This paper will briefly highlight the justifications of this digital technology in comparison with conventional gas lift techniques. It will consider value added from the design stage, through installation operations, to production optimization. This DIAL system installation confirms the ability to be implement the technology in a challenging dual string completion design to enable deeper injection while avoiding interventions on a well with a greater than 60-degree deviation. With remotely operated, non-pressure dependent multi-valve in-well gas lift units, the technology removes the challenges normally associated with gas-injected production operation in a dual completion well – gas robbing and multi-pointing. Despite the additional operational & planning complications due to COVID-19 restrictions, the well was completed with zero NPT and LTI. Once brought online, this DIAL-assisted production well will be remotely monitored and controlled ensuring continuous production optimization, part of PETRONAS’ upstream digitization strategic vision.


2021 ◽  
Author(s):  
Rachelle Christine Cornwall ◽  
Daniel Dima Shkorin ◽  
Rodrigo Alberto Guzman ◽  
Jalal Rojdi El-Majzoub ◽  
Mahrous Sadek El-Sedawy ◽  
...  

Abstract Gas lift operations are highly dependent on data quality and team competence to operate the asset efficiently. Traditional methods for gas lift well surveillance and diagnostics rely on wireline services, a method with growing constraints to adapt to constantly evolving well and operational challenges. The Well Intervention-less Tracer Surveillance System (WITSS) provides a cost effective, comprehensive approach to well surveillance without the reliance on tools entering the well. This results in reduced HSE risks and no associated deferred production. This paper describes a pilot implementation to evaluate the adequacy and accuracy of this technology in the context of ADNOC Onshore gas lift producers. The objective is to evaluate its performance against conventional method data sets and assess the reproducibility of data where no reference existed. The 10 well pilot included both accessible and obstructed wells. Data from the custom designed modular portable kit used for executing the surveillance activities, was analyzed and compared against conventional flowing gradient surveys with full data consumption in well models for comprehensive nodal analysis and opportunity identification. For this pilot, ten wells were surveyed twice using the WITSS method. Results were compared to traditional methods acquired through wireline surveys for accessible wells, and against established multi-phase flow correlations for obstructed wells. The pilot confirmed the WITSS method is as accurate as conventional gauge measurements in mapping pressure and temperature profiles in gas lifted wells. The WITSS method provided additional insight on accurate gas consumption based on the assessment of total gas lift utilization per well and allowed comprehensive model calibration and well performance definition. It also identified potential integrity issues via identification of primary injection at designed stations and secondary unwanted injection sites. Continuous compositional gas analysis of both injected and produced gas streams provided additional verification for analyzing gas lift injection performance. It also highlighted a change in fluid compositional analysis opening discussions for material selection review of the assets. Production uplift identified from 50% of wells was compliant with the reservoir management strategy. The value proposals of flow stabilization through gas lift valve re-calibrations and replacements, adjustment of injection flow rate and further controls on injection pressure management are under process for implementation. Full field scale up scenario is under preparation.


2021 ◽  
Author(s):  
Magdy Farouk Fathalla ◽  
Mariam Ahmed Al Hosani ◽  
Ihab Nabil Mohamed ◽  
Ahmed Mohamed Al Bairaq ◽  
Aditya Ojha ◽  
...  

Abstract This paper examines risk and rewards of co-development of giant reservoir has gas cap concurrently produce with oil rim. The study focus mainly on the subsurface aspects of developing the oil rim with gas cap and impact recoveries on both the oil rim and gas cap. The primary objective of the project was to propose options to develop oil rims and gas cap reservoir aiming to maximize the recovery while ensuring that the gas and condensate production to the network are not jeopardized and the existing facility constraints are accounted. Below are the specific project objectives for each of the reservoirs: To evaluate the heterogeneities of the reservoir using available surveillance information data.To evaluate the reservoir physics and define the depleted oil rims current Gas oil contact and Water Oil Contact using the available surveillance information and plan mitigate reservoir management plan.To propose strategies in co-development plan with increase in oil rim recovery without impact on gas cap recovery.To propose the optimum Artificial methods to extended wells life by minimize the drawn down and reduce bottom head pressure.To propose methods to reduce the well head pressure to reduce back pressure on the wells. The methodology adopted in this study is based on the existing full field compositional reservoir simulation model for proposing different strategical co-development scenario: Auto gas lift Pilot implementation phase.Reactivate using Auto gas lift all the in-active wells.Propose the optimum wells drilling and completion design, like MRC, ERD and using ICV to control water and gas breakthrough.Proposing different field oil production plateauPropose different water injection scheme The study preliminary findings that extended reach drilling (ERD) wells were proposed, The ability to control gas and water breakthrough along the production section will be handled very well by deploying the advanced flow control valves, reactivation of existing Oil rim wells with Artificial lift increases Oil Rim recovery factor, and optimize offtake of gas cap and oil rim is crucial for increase the recovery factories of oil Rim and gas cap.


Sign in / Sign up

Export Citation Format

Share Document