High-resolution monitoring of aerospace structure using the bifurcation of a bistable nonlinear circuit with tunable potential-well depth

2019 ◽  
Vol 87 ◽  
pp. 98-109 ◽  
Author(s):  
Kai Yang ◽  
Zhen Zhang ◽  
Yanmin Zhang ◽  
Hao Huang
2019 ◽  
Vol 630 ◽  
pp. A140 ◽  
Author(s):  
Donatella Romano ◽  
Francesco Calura ◽  
Annibale D’Ercole ◽  
C. Gareth Few

Context. The faintest Local Group galaxies found lurking in and around the Milky Way halo provide a unique test bed for theories of structure formation and evolution on small scales. Deep Subaru and Hubble Space Telescope photometry demonstrates that the stellar populations of these galaxies are old and that the star formation activity did not last longer than 2 Gyr in these systems. A few mechanisms that may lead to such a rapid quenching have been investigated by means of hydrodynamic simulations, but these have not provided any final assessment so far. Aims. This is the first in a series of papers aimed at analyzing the roles of stellar feedback, ram pressure stripping, host-satellite tidal interactions, and reionization in cleaning the lowest mass Milky Way companions of their cold gas using high-resolution, three-dimensional hydrodynamic simulations. Methods. We simulated an isolated ultrafaint dwarf galaxy loosely modeled after Boötes I, and examined whether or not stellar feedback alone could drive a substantial fraction of the ambient gas out from the shallow potential well. Results. In contrast to simple analytical estimates, but in agreement with previous hydrodynamical studies, we find that most of the cold gas reservoir is retained. Conversely, a significant amount of the metal-enriched stellar ejecta crosses the boundaries of the computational box with velocities exceeding the local escape velocity and is, thus, likely lost from the system. Conclusions. Although the total energy output from multiple supernova explosions exceeds the binding energy of the gas, no galactic-scale outflow develops in our simulations and as such, most of the ambient medium remains trapped within the weak potential well of the model galaxy. It seems thus unavoidable that to explain the dearth of gas in ultrafaint dwarf galaxies, we will have to resort to environmental effects. This will be the subject of a forthcoming paper.


1992 ◽  
Vol 290 ◽  
Author(s):  
James P. Lavine ◽  
Edmund K. Banghart ◽  
Joseph M. Pimbley

AbstractMany electron devices and chemical reactions depend on the escape rate of particles confined by potential wells. When the diffusion coefficient of the particle is small, the carrier continuity or the Smoluchowski equation is used to study the escape rate. This equation includes diffusion and field-aided drift. In this work solutions to the Smoluchowski equation are probed to show how the escape rate depends on the potential well shape and well depth. It is found that the escape rate varies by up to two orders of magnitude when the potential shape differs for a fixed well depth.


2021 ◽  
Vol 67 (2 Mar-Apr) ◽  
pp. 206
Author(s):  
T. Isojärvi

Ground state and 1st excited state energies and wave functions were calculated for systems of one or two electrons in a 2D and 3D potential well having a shape intermediate between a circle and a square or a sphere and a cube. One way to define such a potential well is with a step potential and a bounding surface of form |x| q +|y| q +|z| q = |r| q , which converts from a sphere to a cube when q increases from 2 to infinity. This kind of geometrical object is called a Lame surface. The calculations were done either with implicit finite difference time stepping in ´ the direction of negative imaginary time axis or with quantum diffusion Monte Carlo. The results demonstrate how the volume and depth of the potential well affect the E0 more than the shape parameter q does. Functions of two and three parameters were found to be sufficient for fitting an empirical graph to the ground state energy data points as a function of well depth V0 or exponent q. The ground state and first excited state energy of one particle in a potential well of this type appeared to be very closely approximated with an exponential function depending on q, when the well depth and area or volume was kept constant while changing the value of q. The model is potentially useful for describing quantum dots that deviate from simple geometric shapes, or for demonstrating methods of computational quantum mechanics to undergraduate students.


1967 ◽  
Vol 51 (2) ◽  
pp. 340-353 ◽  
Author(s):  
Y. Prakash ◽  
S. P. Goel

1954 ◽  
Vol 94 (3) ◽  
pp. 737-738 ◽  
Author(s):  
Robert K. Adair

Sign in / Sign up

Export Citation Format

Share Document